

6th Consortium meeting 27-29 November 2023 IST-ID (Bobadela/Lisbon, Portugal)

Phase 1 clinical trials with medical radionuclides

Bernard Doger de Spéville

28 November 2023

Agenda

- Introduction.
- (Pre)Screening and FUP.
 - Clinical.
 - Pathological.
 - FUP during treatment.
 - Prescreening for treatment.
- Treatment.
 - Sequencial.
 - Avoiding toxicity.
 - "Patient journey".
- Conclusions.

Introduction

- A radionuclide is a radioactive nuclide with an unstable nucleus that dissipate its excess energy by spontaneously emitting ionizing radiation (eg alpha, beta or gamma rays).
- It is also called radioistope, radioactive isotope or radioactive nuclide.
- In nuclear medicine, radionuclides are used for diagnosis, treatment and research.

What causes radioactivity?

- Radioactivity is caused by instability in the nucleus due to:
 - Imbalance in number of neutrons (N) and protons
 (Z)-Natural Radionuclides.
 - Excitation due to bombardment of particles Artificial Radionuclides.

Properties

- Radionuclides are characterized by:
 - Activity.
 - Half-Life.
 - Energy.
 - Decay scheme.
 - Production method.

TABLE : PHYSICAL HALF-LIFE (T_{P1/2}) AND DECAY CONSTANT (λ) FOR RADIONUCLIDES USED IN NUCLEAR MEDICINE

Radionuclide	T _{p1/2}	λ	
Fluorine 18 (¹⁸ F)	110 min	0.0063 m	
Technetium 99m (^{99m} Tc)	6.02 hr	0.1151 hr ⁻¹	
lodine 123 (1231)	13.27 hr	0.0522 hr ⁻¹	
Samarium 153 (¹⁵³ Sm)	1.93 d	0.3591 d ⁻¹	
Molybdenum 99 (⁹⁹ Mo)	2.75 d	0.2522 d ⁻¹	
Indium 111 (¹¹¹ In)	2.81 d	0.2466 d ⁻¹	
Thallium 201 (²⁰¹ Tl)	3.04 d	0.2281 d ⁻¹	
Gallium 67 (⁶⁷ Ga)	3.26 d	0.2126 d ⁻¹	
Xenon 133 (133Xe)	5.24 d	0.1323 d ⁻¹	
lodine 131 (¹³¹ I)	8.02 d	0.0864 d ⁻¹	
Phosphorus 32 (³² P)	14.26 d	0.0486 d ⁻¹	
Chromium 51 (⁵¹ Cr)	27.70 d	0.0250 d ⁻¹	
Strontium 89 (⁸⁹ Sr)	50.53 d	0.0137 d ⁻¹	
lodine 125 (125)	59.41 d	0.0117 d ⁻¹	
Cobalt 57 (⁵⁷ Co)	271.79 d	0.0025 d ⁻¹	

Production Methods

METHOD OF RADIONUCLIDE PRODUCTION	ADVANTAGES	DISAVANTAGES
Cyclotron	 High specific activity. Fewer radioistopes are produced. It is easily accesible than nuclear reactor 	•Expensive tu purchase and operate
Nuclear fission	 The fission process is a source of a number of widely used radioisotopes (90Sr, 99Mo, 131I and 133Xe) High specific activity 	 Large quantities of radioactive materials generated
Neutron activation	-	 It is difficult to separate chemically Low specific activity
Generator	 It is cheap It is portable High spcific activity It is easy to operate 	 It cannot be stored for future use

Commonly Used Radionuclides

- The primary radionuclide used for **diagnostic** nuclear medicine is **Technetium 99m**.
- The primary radionuclide used for **therapeutic** nuclear medicine is **lodine-131**.
- The primary radionuclide used for Positron Emission Tomography (**PET**) is Fluorine-18labelled De-oxyglucose (**FGD**).

Radiopharmaceuticals

- Pharmaceuticals are attached (labelled) to the radionuclide in order to send it to **desired target** within the body. The resultant mixture is called radiopharmaceuticals.
- Compose of a radionuclide **bond** to an organic molecule.
- Radiopharmaceuticals are designed to concentrate on a particular organ/tissue.
- Mimic a natural physiologic process.
- Evaluate **function** rather than anatomy.

Desirable properties of radiopharmaceuticals

- Localize largely and quickly in a target organ.
- Eliminated from the body with effective T_{1/2} similar to duration of examination.
 - Effective T_{1/2} should be long enough to complete the study, but short enough to minimize patien dose.
- Have **low toxicity**.
- Form **stable** product in vivo and in vitro.
- Minimal electron contamination.
- Contain **no** chemical or radionuclide **contaminants**.
- Be **readily** and **cheap** available.

Advantages of radiopharmaceuticals

Disadvantages of radiopharmaceuticals

- More precise than surgery or RT. Avoiding healthy tissue injury.
- They can reach tumors that are difficult to reach with other treatment methods.
- May be less expensive than other treatment methods.

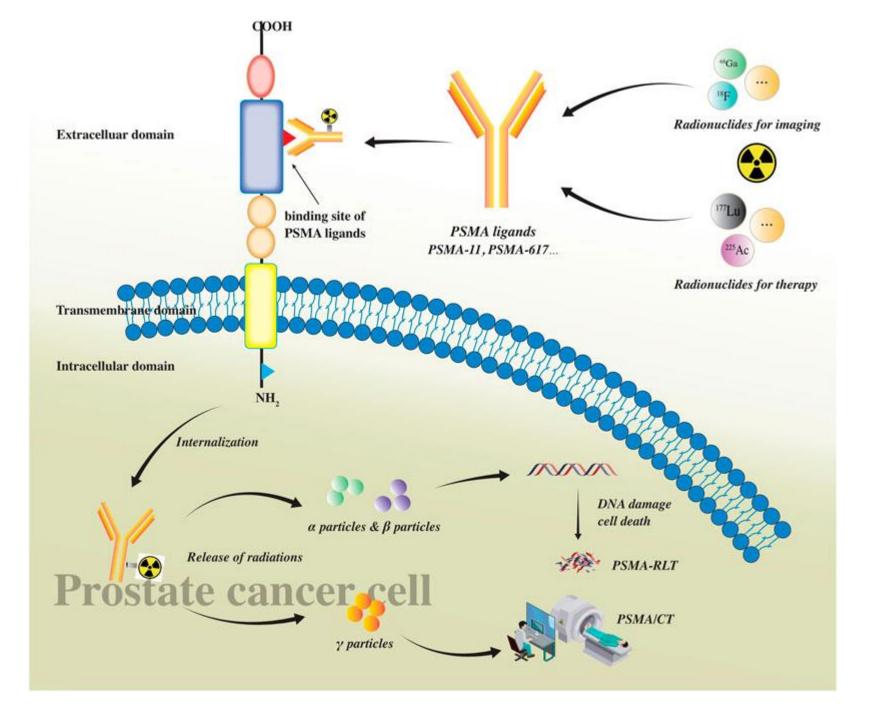
- Adverse events:
 - Fatigue.
 - Nausea/vomiting.
 - Myelosupression.
- Difficult administration.

Types of therapies

- Targeted radiopharmaceuticals These radiopharmaceuticals are designed to bind to specific molecules on cancer cells. This allows the radiopharmaceutical to concentrate on cancer cells, reducing damage to healthy tissues.
- Controlled-release radiopharmaceuticals These radiopharmaceuticals are designed to release radiation in a controlled manner over a period of time. This can help increase the effectiveness of the treatment and reduce side effects.
- Combination radiopharmaceuticals These radiopharmaceuticals combine radiation with other treatments, such as chemotherapy or immunotherapy. This can help improve treatment results.

Radionuclides for therapy

- 131l treatment of thyroid cancer.
- 131l treatment in hyperthyroidism.
- Radioimmunotherapy with 90Y ibritumomab tiuxetan (Zevalin) and 131I tositumomamab (Bexxar) therapy of low-grade non-Hodgkin's lymphoma.
- They can be administered in capsule or liquid solution form.


Current applications approved for treatment

Radiopharmaceutical	Active Ingredient	Cancer Type	Approval Date
Xofigo®	Radium-223 dichloride	Metastatic castration-resistant prostate cancer	2013
Hicon®	Sodium iodide I-131	Thyroid cancer	1971
Azedra®	Lobenguane iodine-131	Pheochromocytomas and paragangliomas	2012
Quadramet®	l-131 metaiodobenzylguanidine	Neuroendocrine tumors	2008
Zevalin®	Yttrium Y-90 ibritumomab tiuxetan	Non-Hodgkin's lymphoma	2002
Lutathera®	Lutetium Lu-177 dotatate	Neuroendocrine tumors	2018
	Lutetium Lu-177 vipivotide	Prostate-specific membrane antigen (PSMA)-positive metastatic castration-	
Pluvicto™	tetraxetan	resistant prostate cancer	2021
SkyScrin®	Gallium Ga-68 dotatoc	Neuroendocrine tumors	2018
Myloview™	Iodine-131 I-bensamidin	Myeloma	2021

Receptor	Radionuclide	Study drug	Conditions	Accrual goal	Status/date of completion	Phase	NCT
SSTR ⁹⁰ Y ⁶⁷ Cu		⁹⁰ Y-DOTA-tyr3- Octreotide	Neuroendocrine Tumor, Carcinoid Tumor, Neuroblastoma, Medulloblastoma	39	5/27/20 ^a	2	NCT03273712
		⁶⁷ Cu-SARTATE	Neuroblastoma, Relapsed Neuroblastoma and Refractory Neuroblastoma	34	Recruiting	2	NCT04023331
	⁶⁸ Ga	⁶⁸ Ga- DOTATATE-	Hepatocellular Carcinoma	12	2/3/22 ^b	2	NCT03648073
PSMA ¹⁷⁷ Lu ¹⁷⁷ Lu-PSMA-617 ¹⁷⁷ Lu ¹⁷⁷ Lu-DOTA- TLX591 ¹⁷⁷ Lu-DOTA- TLX591 ⁶⁷ Cu ⁶⁷ Cu-SAR- bisPSMA		¹⁷⁷ Lu-PSMA-617	Progressive Metastatic Castration Resistant Prostate cancer	200	12/31/21 ^c	2	NCT03392428
			Biochemically Recurrent Oligometastatic, Prostate Specific Membrane Antigen-Expressing Prostate Cancer	50	Recruiting	2	NCT05146973
			Metastatic Castrate Resistant Prostate Cancer (mCRPC)	44	Recruiting	2	NCT04868604
¹⁷⁷ Lu ¹⁷⁷ Lu	¹⁷⁷ Lu	¹⁷⁷ Lu-PSMA-617	Prostatic Neoplasms	20	Active/Not Recruiting	2	NCT04430192
	¹⁷⁷ Lu	¹⁷⁷ Lu-ITG- PSMA-1	Soft Tissue Sarcoma	20	Recruiting	1	NCT05420727
FAP ¹⁷⁷ Lu ¹⁷⁷ Lu-DOTA- FAPI			Locally Advanced or Metastatic Cancer	30	Recruiting	1	NCT04849247
	¹⁷⁷ Lu ¹⁷⁷ Lu-FAP-2286 Advanced Solid Tumors		Advanced Solid Tumors	170	Recruiting	1+2	NCT04939610
¹¹¹ In-FPI-1967 Cell Carcinoma, Blad FGFR3 Genetic Alter Overexpression, Ovar		Advanced Solid Tumor, Head and Neck Squamous Cell Carcinoma, Bladder Carcinoma, Susceptible FGFR3 Genetic Alterations, FGFR3, FGFR3 Protein Overexpression, Ovarian Cancer, Colorectal Cancer, Breast Cancer, Liver Cancer, Lung Cancer, Gastric Cancer	155	Recruiting	1+2	NCT05363605	
CCK2 Receptor— Gastrin analog	¹⁷⁷ Lu	¹⁷⁷ Lu-PP-F11N	Thyroid Cancer, Medullary; Neuroendocrine Tumor of the Lung Grade 1 and 2; Neuroendocrine Tumor of the Thymus Grade 1 and 2; Neuroendocrine Tumor GEP Grade 1-3	24	Recruiting	1	NCT02088645
CD46	⁸⁹ Zr	⁸⁹ Zr-DFO-YS5	mCRPC	24	Recruiting	1	NCT05245006

PRESCREENING & FUP.

Correlation Between Quantitative PSMA PET Parameters and Clinical Risk Factors in Non-Metastatic Primary Prostate Cancer Patients

Sebastian Zschaeck^{1,2*†}, Stephanie Bela Andela^{1†}, Holger Amthauer³, Christian Furth³, Julian M. Rogasch^{2,3}, Marcus Beck¹, Frank Hofheinz⁴ and Kai Huang³

- [68Ga] Ga-PSMA-11 PET/CT imaging
- Serum (PSA) values.
- clinical T stage.
- Gleason scores

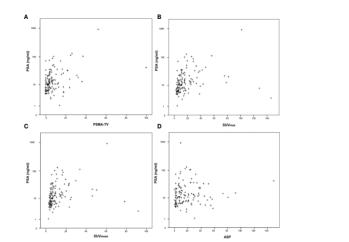
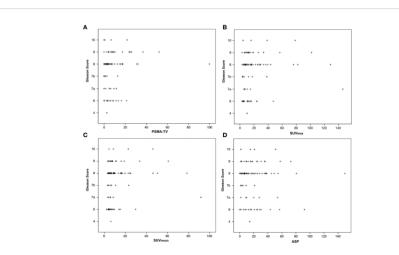
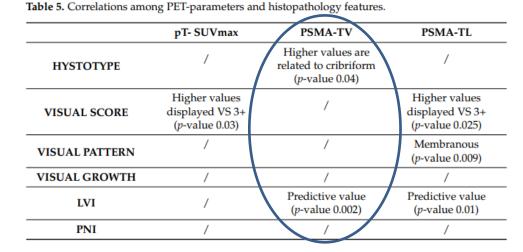
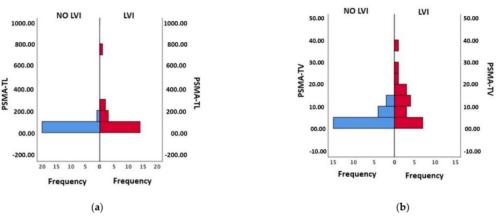


FIGURE 1 | Correlation between serum prostate-specific antigen (PSA) values and quantitative PSMA-PET parameters. (A) PSMA-derived turnor volume (PSMA-TV), (B) Maximum standardized uptake value (SUVmax), (C) Mean standardized uptake value (SUVmean) and (D) Turnor asphericity (ASP), PSA values are plotted on a logarithmic scale.

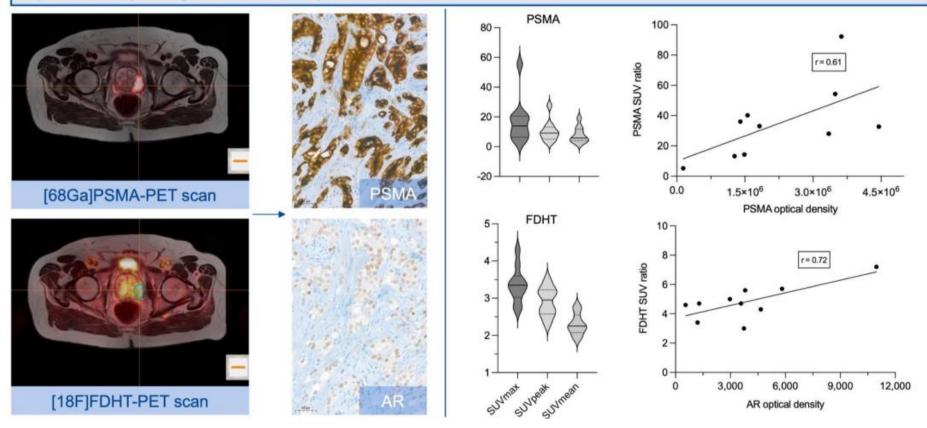

FIGURE 2 | Correlation between Gleason scores obtained by biopsy before imaging and quantitative PSMA-PET parameters. (A) PSMA-derived tumor volume (PSMA-TV), (B) Maximum standardized uptake value (SUVmax), (C) Mean standardized uptake value (SUVmean) and (D) Tumor asphericity (ASP).

Histology and PSMA Expression on Immunohistochemistry in High-Risk Prostate Cancer Patients: Comparison with ⁶⁸Ga-PSMA PET/CT Features in Primary Staging

Luigia Vetrone ^{1,*,†}, Riccardo Mei ^{1,†}, Lorenzo Bianchi ², Francesca Giunchi ^{3,*}, Andrea Farolfi ⁴, Paolo Castellucci ⁴, Matteo Droghetti ², Massimiliano Presutti ², Alessio Degiovanni ³, Riccardo Schiavina ², Eugenio Brunocilla ², Antonietta D'Errico ³ and Stefano Fanti ⁴

- 138 pts high-risk Prostate Cancer.
- ⁶⁸Ga PSMA-PET/CT.
- Radical prostatectomy.

Figure 3. (a) Mann–Whitney Test for PSMA-TL and LVI (*p*-value 0.01); (b) Mann–Whitney Test for PSM-TV and LVI (*p*-value 0.002).

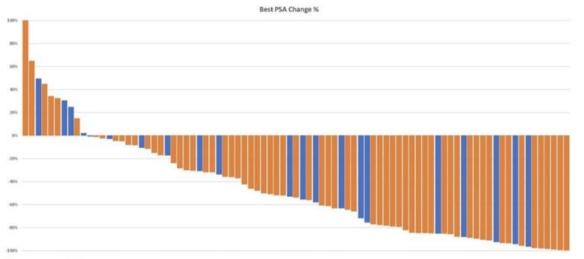

Consecutive PSMA and AR PET imaging shows positive correlation to AR and PSMA protein expression in primary hormone naïve prostate cancer.

Valentin al Jalali^{1,2}, Gabriel Wasinger³, Sazan Rasul⁴, Bernhard Grubmüller⁵, Beatrix

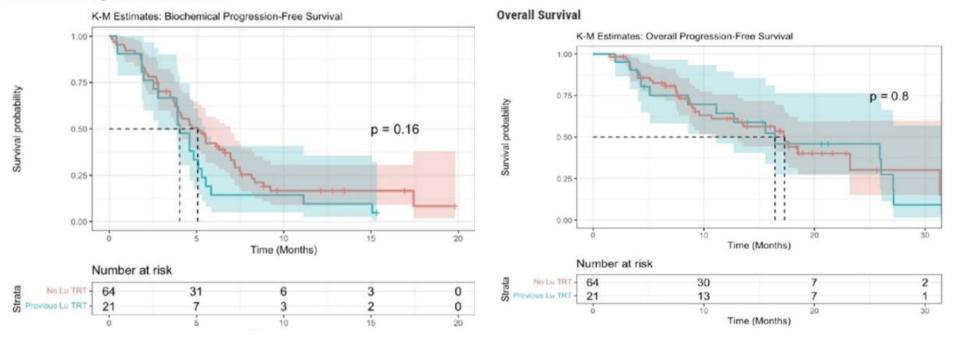
Wulkersdorfer^{1, 2}, Theresa Balber^{1,4}, Markus Mitterhauser^{1, 4, 6}, Judit Simon^{1, 7}, Marcus

Hacker⁴, Shahrokh Shariat⁸, Gerda Egger^{1, 3, 9}, Markus Zeitlinger^{1, 2}#

[68Ga]PSMA and [18F]FDHT PET imaging shows positive correlation to androgen receptor (AR) and PSMA protein expression in primary hormone naïve prostate cancer.


TREATMENT

PSMA-Alpha Targeted Radionuclide Therapy with or without Prior PSMA-Beta Targeted Radionuclide Therapy

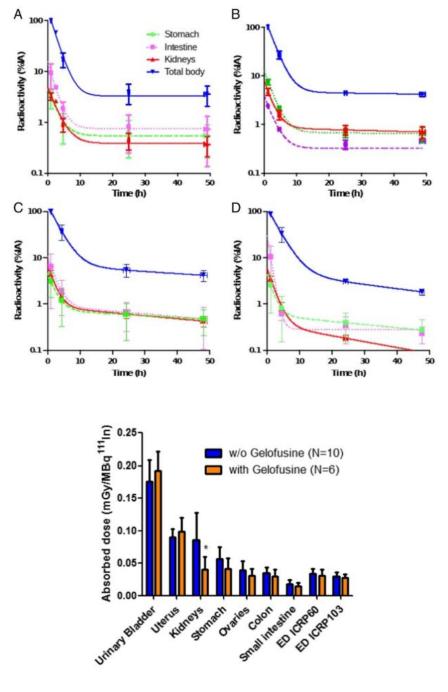

Patient Characteristics	Prior Beta-TRT	No Prior Beta- TRT
Number	21	64
Median PSA (ng/mL)	171.25 (range 4.79 – 2209.87)	35 (2.43 - 9614)
Median Age at Treatment	70 (range 60 - 88)	71.5 (51 - 91)
Halabi Risk Category		
Low	0 (0%)	10 (16%)
Intermediate	6 (29%)	22 (34%)
High	15 (71%)	32 (50%)
Therapy		
225 Ac-J591 Single-Dose1	14 (67%)	17 (27%)
225Ac-J591 Fractionated ²	4 (19%)	20 (31%)
225Ac-J591 + 177Lu-PSMA-I&T3	1 (5%)	17 (27%)
²²⁵ Ac-J591 + Pembro ⁴	2 (9%)	10 (16%)
Prior Taxane Chemotherapy	13 (62%)	38 (59%)
>1 Prior ARPI	14 (67%)	36 (56%)
Median # EBRT	1 (range 0-3)	1 (0 - 6)
Prior Radium-223	3 (14%)	12 (19%)
Lymph Node Metastasis	13 (62%)	36 (56%)
Liver Metastasis	2 (9%)	8 (13%)
Lung Metastasis	3 (14%)	7 (11%)
Bone Metastasis	19 (90%)	54 (84%)
⁶⁸ Ga-PSMA-11 SUVmax	58.8 (range 9.6- 129)	34.7 (3 - 105.7)
Median Administered ²²⁵ Ac Activity (KBq/kg)	80 (range 13.3 – 130)	80 (35 – 130)

Adverse Event	Prior Beta-	No Prior Beta-
	TRT (N=21)	TRT (N=64)
Grade 1-2 Neutrophil	6 (29%)	24 (37%)
Grade 3-4 Neutrophil	2 (9%)	6 (9%)
Grade 1-2 Platelet	12 (57%)	36 (56%)
Grade 3-4 Platelet	3 (14%)	13 (20%)
Grade 1-2 Anemia	8 (38%)	17 (27%)
Grade 3-4 Anemia	2 (9%)	9 (14%)
Pain	10 (48%)	37 (58%)
Xerostomia	10 (48%)	39 (61%)
Fatigue	17 (81%)	47 (73%)
Nausea	14 (67%)	37 (58%)
Cr Elevation	1 (5%)	5 (8%)
AST Elevation	7 (33%)	29 (45%)

Biochemical Progression-Free Survival

No significant difference PSA50 (52 vs 58%), PFS (4.03 vs 5.07 mo), or OS (16.4 vs 17.3 mo)

[¹¹¹In]In-CP04 as a novel cholecystokinin-2 receptor ligand with theranostic potential in patients with progressive or metastatic medullary thyroid cancer: final results of a GRAN-T-MTC Phase I clinical trial


Luka Lezaic^{1,2} · Paola Anna Erba³ · Clemens Decristoforo⁴ · Katja Zaletel^{1,2} · Renata Mikolajczak⁵ · Helmut Maecke⁶ · Theodosia Maina⁷ · Mark Konijnenberg⁸ · Petra Kolenc^{1,9} · Malgorzata Trofimiuk-Müldner¹⁰ · Elwira Przybylik-Mazurek¹⁰ · Irene Virgolini⁴ · Marion de Jong⁸ · Alide C Fröberg⁸ · Christine Rangger⁴ · Gianpaolo Di Santo⁴ · Konrad Skorkiewicz¹¹ · Piotr Garnuszek⁵ · Bogdan Solnica¹² · Berthold A. Nock⁷ · Danuta Fedak¹² · Paulina Gaweda¹² · Alicja Hubalewska-Dydejczyk¹⁰

16 eligible patients with progressive or metastatic MTC (positive [¹⁸F]FDG PET-CT/CT/MRI or elevated calcitonin and/or positive calcitonin doubling time)

Phase I multicenter clinical trial – GRAN-T-MTC

<u>Phase 1A:</u> 4 patients Two peptid amounts: 10 and 50 μg CP04

NO severe adverse events <u>Phase 1B:</u> 50 μg CP04 *Arm 1:* with Gelofusine administration *Arm 2:* without Gelofusine administration

