

Dedicated phantom measurements to develop and validate quantitative ²²⁵Ac-(micro)SPECT imaging

Michel Koole

PRISMAP meeting Lisbon 28 nov 2023

MOLECULAR IMAGING RESEARCH AND CLINIC LEUVEN

Overview

Source	Activity	Time	Form	site
Α	95.8 kBq in 500 μl of 4M HNO3	19.06.2023 @ 15h	Liquid	JRC
В	10 MBq	19.06.2023 @ 15h	Dry	JRC
С	9.26 MBq Ac-225 with 24.2 MBq Ra-225 producing Ac-225	20.06.2023 @ 9am	Liquid	MEDICIS

Siemens Intevo Bold T16 SPECT/CT system (clinical)

Collimator	MEGP & HEGP
Crystal thickness	3/8"

Molecubes γ/X-CUBE SPECT/CT system (preclinical)

Collimator	LEGP
Crystal thickness	3/8"

Source	Activity	Time	Form	site
А	95.8 kBq in 500 µl of 4M HNO3	19.06.2023 @ 15h	Liquid	JRC

Only limited gamma-emissions in de decay chain

- ²²⁵Ac No
- 221 Fr Yes => γ = 218 keV (11.4%)
- ²¹⁷At No
- ²¹³Bi Yes => γ = 440 keV (26.1%)
- ²¹³Po No

Source	Activity	Time	Form	site
А	95.8 kBq in 500 µl of 4M HNO3	19.06.2023 @ 15h	Liquid	JRC

Source	Activity	Time	Form	site
А	95.8 kBq in 500 µl of 4M HNO3	19.06.2023 @ 15h	Liquid	JRC

Window Number	Center (keV)	Width (%)	Shift (%)	Туре	Parent
A1	440	15	0	Photopeak	
B2	217	15	0	Photopeak	
C3	80	50	0	Photopeak	
D4		10		Lower Scatter	A1
E5		10		Upper Scatter	B2
F6		15		Lower Scatter	B2

Source	Activity	Time	Form	site
В	10 MBq	19.06.2023 @ 15h	Dry	JRC

MOLECULAR IMAGING RESEARCH AND CLINIC LEUVEN

Final Product 10 MBq Ac-225 (dry) @ 19.06.2023 (AcShKUL02.Spc.)

Source	Activity	Time	Form	site
С	9.26 MBq Ac-225 with 24.2 MBq Ra-225 producing Ac-225	20.06.2023 @ 9am	Liquid	MEDICIS

$$N_{2} = \frac{\lambda_{1}}{\lambda_{2} - \lambda_{1}} N_{1}^{0} \left(e^{-\lambda_{1}t} - e^{-\lambda_{2}t} \right) + N_{2}^{0} e^{-\lambda_{2}t}$$

$$\lambda = \frac{\ln 2}{T_{1/2}} = \frac{0.693}{T_{1/2}}$$

KU LEUVEN

Source B: 7.5% residual activity

Source C: 24% residual activity

22.06.2023 @ 17h Source B: 7.33 MBq Source C: 7.68 MBq

15 MBq in 250 ml volume

=> 60 kBq/ml

Ac-225 settings for Capintec CRC-55t

Cal # 775 with a multiplication factor of 5

NEMA IEC PET body phantom

6 spheres (Ø 13 mm, 17 mm, 22 mm, 28 mm, 37 mm and 60 mm)

Total volume 160 ml

	Hole diameter (mm)	Septal Thickness (mm)	Hole Length (mm)
ME	2.94	1.14	40.64
HE	3.4	3	50.8

Acquisition and reconstruction parameters				
Orbit	Body contour			
Matrix	256 x 256			
Pixel size	2.4 x 2.4			
# projections	60/32			
Time per projection	40 sec			
Reconstruction	OSEM			
Iterations/subsets	50/2			
Attenuation map	CT based			
Scatter correction	scatter windows			
Filter	No filter			

	collimator	time per projection	# projections per head
26/06/2023	са	libration measur	rements
28/06/2023	HE	40	60
28/06/2023	HE	40	32
14/07/2023	HE	40	60
14/07/2023	HE	40	32
15/07/2023	ME	40	60
15/07/2023	ME	40	32
15/08/2023	HE	40	60
15/08/2023	HE	40	32
19/09/2023	ME	40	60
19/09/2023	HE	40	60

HE 60 projections per detector head

HE 32 projections per detector head

ME 60 projections per detector head

To be solved?

(energy dependent attenuation map – scatter correction)

Molecubes γ /X-CUBE SPECT/CT system

20ml syringe filled with 19.73 ml Ac-225 solution and scanned on the Molecubes γ -cube Data were reconstructed with a voxel size of 500µm using MLEM/30 iterations with an energy window centred on 460keV ± 10%

5 min 'test' scan (short FOV of 1cm)

1 hour scan (3cm FOV)

4 hour scan (3cm FOV)

16 hour scan (3cm FOV)

Cerenkov Imaging as alternative

Eppendorf with 5 min exp

Perkin Elmer IVIS Spectrum

KU LEUVEN

To conclude

- Radionuclide calibrator settings for Ac-225 confirmed
- Series of image quality measurements with the clinical SPECT system with some reconstruction issues still open (under discussion with Siemens)
- Preclinical SPECT system in current configuration not suitable for Ac-225 imaging <> Cerenkov imaging feasible
- <> No protocol yet for gamma counter measurements with Ac-225
- <> Hospital environment not very flexible for planning measurements MEDICIS more flexible to provide Ac-225 <> clinical use of Ac-225 provided by JRC Ac-225/Ra-225 source manageable but relying on activity measurements MEDICIS

AlphaMet

A European project on metrology for emerging targeted alpha therapies

6,4

Ana Denis-Bacelar, PhD

ana.denisbacelar@npl.co.uk

National Physical Laboratory, UK

EFOMP Symposium on Molecular Radiotherapy Dosimetry 2023

AlphaMet aims to address the unique and unmet metrological challenges of alpha emitters and support the implementation of end-to-end traceability for alpha therapies before wide routine adoption

Consortium

2.3M€, Sep 2023 – Aug 2026

Eight clinical and research partners, and one affiliated entity

WP1: Radioactivity standards

CURRENT STATE OF THE ART

- ²²³Ra standards found that patients were being injected with 9% more activity than intended
- No fully validated standards available for other α -emitters
- Recommended administered activity accuracies $< \pm 5\%$, however, how well can user measure alpha emitters?

Potential improvements in activity measurement capabilities (e.g. ¹²³I)

BEYOND STATE OF THE ART

- Development and dissemination of standards for ²²⁵Ac, ²¹²Pb and ²¹¹At at multiple institutes
- Intercomparison of activity measurement capabilities in preclinical centres and hospitals to assess user needs (²²⁵Ac)

Ferreira et al, ARI (2016)

2015

WP2: In-vivo activity quantification

CURRENT STATE OF THE ART

- ✤ 3D quantitative SPECT (QSPECT) imaging is not well established for α -emitters, but is essential for post-treatment verification (BSS)
- Progeny in-growth, low activities
 Iow counts, poor resolution
- Unknown accuracy, reproducibility and uncertainties

BEYOND STATE OF THE ART

- Assess feasibility/practicality of QSPECT for α -emitters (calibration, limits of detectability, quality control)
 - Improve QSPECT with advanced processing techniques:
 - In-silico models for optimisation and generation of ground truth reference data
 - Reconstruction algorithms
 - For a Harmonisation of α -QSPECT imaging
 - → international multi-centre comparison exercise

SPECT