

Cristina Müller :: Research Group Leader :: Paul Scherrer Institute

Optimization of the Radiotheragnostic Concept: Investigations of the Next Generation Radionuclides: ¹⁶¹Tb and ¹⁴⁹Tb PRISMAP Public Event – "Challenges in nuclear medicine" 28 November 2023, Lisbon, Portugal

Center for Radiopharmaceutical Sciences

Head of CRS: Prof. Roger Schibli

CENTER FOR RADIOPHARMACEUTICAL

Institute of Pharmaceutical Sciences, D-CHAB

BIO Division

Center for Radiopharmaceutical Sciences

Head of CRS: Prof. Roger Schibli

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Institute of Pharmaceutical Sciences, D-CHAB

PAUL SCHERRER INSTITUT

BIO Division

"Nuclide Chemistry Group"

Preclinical research in Radiopharmaceutical Sciences:

- Ligand design optimization (PSMA ligands, folate conjugates etc.) using various modifications (e.g. albumin binders)
- Investigation of non-standard (in-house produced) radionuclides with a particular focus on Auger electron emitters (e.g. ¹⁶¹Tb)

Radioligand

PET/SPECT

Targeting Agent

Next Generation Radionuclides

Comparison of ¹⁶¹Tb and ¹⁷⁷Lu

Decay characteristics

Nuclide	T _{1/2}	β⁻-energy (mean)	γ radiation; energy (%)	Conversion & Auger* electrons
Lu 177 6.65 d	6.65 days	134 keV	54 keV (4%) 113 keV (6%) 208 keV(10%)	No
Tb 161 6.89 d	6.89 days	154 keV	45 keV (18%) 49 keV (17%) 75 keV (10%)	Yes!

*Auger electrons: energy: 20 eV-1 keV; tissue range: 2-500 nm; LET: 4-26 keV/ μ m

Treatment of Micro- & Macrometastases

				Hypothesis		
Nuclide	T _{1/2}	β ⁻ -energy (mean)	γ radiation; energy (%)	Conversion & Auger* electrons	Macrometastases	Single Cancer Cells & Cancer Cell Clusters
Lu 177 6.65 d	6.65 days	134 keV	54 keV (4%) 113 keV (6%) 208 keV(10%)	No		
Tb 161 6.89 d	6.89 days	154 keV	45 keV (18%) 49 keV (17%) 75 keV (10%)	Yes!		F

Application of ¹⁶¹Tb with Somatostatin Analogues?

Application of ¹⁶¹Tb in combination with somatostatin analogues?

Hypothesis

Macrometastases

Single Cancer Cells & Cancer Cell Clusters

Application of ¹⁶¹Tb with Somatostatin Analogues?

Application of ¹⁶¹Tb in combination with somatostatin analogues?

NETRF Petersen Award 2018 to investigate the utility of ¹⁶¹Tb in combination with DOTATOC

Development of ¹⁶¹Tb for Clinical Translation

27 EU P Prismap

Application of ¹⁶¹Tb in combination with somatostatin analogues?

NETRF Petersen Award 2018 to investigate the utility of 161 Tb in combination with DOTATOC

R. Schibli R.P. Baum N.P. van der Meulen C. Müller **Goal:** Further development of ¹⁶¹Tb and translation of ¹⁶¹Tb-DOTATOC to a first-in-human application.

NETRF Grant: "First-in-Human" Application of ¹⁶¹Tb-DOTATOC

"First-in-human" application

R. Baum P. Bernhardt

Zentralklinik Bad Berka, Germany

Goal: Further development of ¹⁶¹Tb and translation of ¹⁶¹Tb-DOTATOC to a first-in-human application.

Baum & Singh et al. 2021, J Nucl Med 62:1391.

Use of SST Receptor Antagonists with ¹⁶¹Tb?

"First-in-human" application

Zentralklinik Bad Berka, Germany

R. Baum P. Bernhardt

Patient with NEN (600 MBq ¹⁶¹Tb-DOTATOC)

Baum & Singh et al. 2021, J Nucl Med 62:1391.

Application of ¹⁶¹Tb in combination with SST receptor **antagonists**?

Use of SST Receptor Antagonists with ¹⁶¹Tb?

Å

SST receptor antagonists do not effectively internalize, but localize at the cellular membrane.

Auger electrons have an ultra-short tissue range and should be delivered ideally to the cellular nucleus to be effective to induce DNA double strand breaks.

Terbium-161 also emits **conversion electrons** of variable energies.

Application of ¹⁶¹Tb in combination with SST receptor **antagonists**?

Effect of ¹⁶¹Tb at the Cell Membrane?

SST receptor antagonists do not effectively internalize, but localize at the cellular membrane.

Auger electrons have an ultra-short tissue range and should be delivered ideally to the cellular nucleus to be effective to induce DNA double strand breaks.

Terbium-161 also emits conversion electrons of variable energies.

¹⁶¹Tb 50 ¹⁶¹Tb Absorbed dose (Gy) 0 0 0 0 0 0 177Lu ¹⁶¹Tb 177L U ¹⁶¹Tb ¹⁷⁷Lu ¹⁷⁷Lu 10 ¹⁶¹Tb 177L U 177LJ Cell surface Intra-cytoplasmic Intra-nuclear Cell surface Intra-cytoplasmic Intra-nuclear Single cell Cell cluster (central cell)

Alcocer-Ávila et al. 2020 EJNMMI Res 7:33

¹⁶¹Tb should be a better candidate than ¹⁷⁷Lu for irradiating single tumor cells and micrometastases, **regardless of the radionuclide distribution.**

Effect of ¹⁶¹Tb at the Cell Membrane?

Enhancement factor (single cell)

		Cell surface	Intra- cyto- plasmatic	Whole cell	Intra- nuclear
	¹⁷⁷ Lu	1.9	3.0	5.8	10.7
	¹⁶¹ Tb	5.0	8.3	19.5	38.6
	¹⁶¹ Tb/ ¹⁷⁷ Lu	2.6	2.8	3.4	3.6

Alcocer-Ávila et al. 2020 EJNMMI Res 7:33

¹⁶¹Tb should be a better candidate than ¹⁷⁷Lu for irradiating single tumor cells and micrometastases, **regardless of the radionuclide distribution.**

¹⁶¹Tb-Based SST Receptor Agonist/Antagonist

27 EU P Prismap

It is expected that ¹⁶¹Tb also shows an improved effect when localized at the cellular membrane and not only when internalized into the tumor cell.

Therefore, the comparison of SST receptor agonists (internalizing) and SST receptor antagonists (non-internalizing) made sense.

DOTATOC Cell-internalizing SSTR agonist

DOTA-LM3 Non-internalizing SSTR antagonist

In Vitro Studies: Viability Assays

DOTATOC Cell-internalizing SSTR agonist

DOTA-LM3 Non-internalizing SSTR antagonist

In Vitro Studies: Cell Uptake and Internalization

Borgna et al. 2022 Eur J Nucl Med Mol Imaging 49:1113.

Comparison of Apples and Apples

Comparison of SSTR Agonists and Antagonists

Müller et al. **2023** unpublished data.

Borgna et al. **2022** Eur J Nucl Med Mol Imaging 49:1113.

In Vivo Studies: ¹⁶¹Tb- *vs*. ¹⁷⁷Lu-based SST Analogues

27 EU P Prismap

Are ¹⁶¹Tb and ¹⁷⁷Lu interchangeable without affecting the tissue distribution profile?

DOTATOC cell-internalizing SSTR agonist

DOTA-LM3 non-internalizing SSTR antagonist

In Vivo Studies: SPECT & Biodistribution Data

Dual-isotope SPECT imaging

DOTA-LM3

15 MBa ¹⁶¹Tb & 15 MBq ¹⁷⁷Lu; 1 nmol/mouse

AR42J tumorbearing mice

Borgna et al. 2021 Pharmaceutics 13:536.

In Vivo Studies: Preclinical Therapy Study

Dual-isotope SPECT imaging

DOTATOC

15 MBq ¹⁶¹Tb & 15 MBq ¹⁷⁷Lu; 1 nmol/mouse

How does ¹⁶¹Tb perform compared to ¹⁷⁷Lu for SST receptor targeted therapy?

DOTA-LM3

15 MBq ¹⁶¹Tb & 15 MBq ¹⁷⁷Lu; 1 nmol/mouse

AR42J tumor-

bearing mice

Preclinical therapy study in AR42J-tumorbearing mice injected with 2 x 10 MBq of the respective SST analogue.

How does ¹⁶¹Tb perform compared to ¹⁷⁷Lu for SST receptor targeted therapy?

Preclinical therapy study in AR42J-tumorbearing mice injected with 2 x 10 MBq of the respective SST analogue.

Survival curves

Survival curves

Survival curves

Clinical Translation of ¹⁶¹Tb-DOTA-LM3

Clinical Study

Clinical Phase 0/1 Study in has been initiated using ¹⁶¹Tb-DOTA-LM3 at Basel University Hospital, Switzerland (SNSF 32003B_205070 Prof. R. Schibli/Prof. D. Wild)

Clinical Translation of ¹⁶¹Tb-DOTA-LM3

Clinical Study

Clinical Phase 0/1 Study in has been initiated using ¹⁶¹Tb-DOTA-LM3 at Basel University Hospital, Switzerland (SNSF 32003B_205070 Prof. R. Schibli/Prof. D. Wild)

1st Patient

Whole body scintigaphy (24 h p.i.)

¹⁶¹Tb-DOTA-LM3 (1.05 GBq)

The patient had 5 metastases: 4 metastases (diameter: 8-15 mm) were visualized on the scintigraphy. The smallest metastasis (6 mm) was visualized on the SPECT scan.

Next Generation Radionuclides

Tumor Targeted α -Therapy (TAT)

^{149}Tb as a Potentially Interesting $\alpha\text{-Particle}$ Emitter

²²⁵Ac-DOTATATE – Clinical data

¹⁴⁹Tb for α -therapy

- Half-life of 4.1 h
- Low α-energy of 3.9 MeV
- No α-emitting daughters
- Positrons (Eβ⁺ = 730 keV; I = 7.1%)

Production at **ISOLDE/CERN** via a spallation process of tantalum targets and on-line mass separation; Separation from matrix and isobar impurities at **PSI**.

¹⁴⁹Tb in Combination with Somatostatin Analogues?

Can we use ¹⁴⁹Tb for targeted radionuclide therapy using SST receptor agonists and antagonists? ¹⁴⁹Tb for α -therapy

- Half-life of 4.1 h
- Low α-energy of 3.9 MeV
- No α-emitting daughters
- Positrons (Eβ⁺ = 730 keV; I = 7.1%)

Production at **ISOLDE/CERN** via a spallation process of tantalum targets and on-line mass separation; Separation from matrix and isobar impurities at **PSI**.

¹⁴⁹Tb-Based DOTATATE and DOTA-LM3

DOTA-LM3 non-internalizing SSTR antagonist

27 EU

Prismap

Can we use ¹⁴⁹Tb for targeted radionuclide therapy using SST receptor agonists and antagonists?

Viability Assay: ¹⁴⁹Tb-Based Somatostatin Analogues

Cell viability (MTT assay)

AR42J tumor cells

DOTATATE cell-internalizing SSTR agonist

DOTA-LM3 non-internalizing SSTR antagonist

Survival Assay: ¹⁴⁹Tb-Based Somatostatin Analogues

Cell viability (MTT assay)

AR42J tumor cells

Cell survival (colony forming assay)

AR42J tumor cells

Biodistribution in AR42J Tumor-Bearing Mice

27 EU P Prismap **Biodistribution study in mice**

(Data acquired with ¹⁶¹Tb)

Cell survival (colony forming assay)

AR42J tumor cells

PET/CT Imaging: 149Tb-Based Somatostatin Analogues

Biodistribution study in mice

(Data acquired with ¹⁶¹Tb)

PET/CT images of mice

(Data acquired based on β^+ emission)

Unpublished data.

Tumor Targeted α-Therapy (TAT) Using ¹⁴⁹Tb

¹⁴⁹Tb-DOTA-LM3 (1 \times 5 MBq)

¹⁴⁹Tb-DOTATATE (1 \times 5 MBq)

A SAMPLE PROVIDENCE AND A SAMPLE AND A SA

14

Time [days]

"munnt"

 \rightarrow ¹⁴⁹Tb-DOTA-LM3 (2 × 5 MBq)

→ ¹⁴⁹Tb-DOTATATE (2 × 5 MBq)

28

21

PET/CT images of mice

(Data acquired based on β^+ emission)

Unpublished data.

200

Control

0-

Λ

Tumor Targeted α-Therapy (TAT)

Survival curves

Unpublished data.

Conclusion - Outlook

- Both, ¹⁶¹Tb and ¹⁴⁹Tb emerged as relevant therapeutic radionuclides for targeted peptide receptor radionuclide therapy (PRRT) using somatostatin analogues.
- Other than initially believed, both ¹⁶¹Tb and ¹⁴⁹Tb show promising results also with somatostatin receptor antagonists (e.g. DOTA-LM3 or DOTA-JR11).
- ¹⁶¹Tb is well available and currently in a translational phase to clinics; many sites use ¹⁶¹Tb for preclinical and clinical research.
- The production of ¹⁴⁹Tb is a challenge and additional/new facilities will be necessary to make it available in large quantities so that more preclinical research can be conducted.
- Finally, it would be of great value for nuclear oncology if ¹⁵⁵Tb (SPECT) and ¹⁵²Tb (PET) could be made available for clinical application (dosimetry).

Acknowledgment

Center for Radiopharm. Sciences (PSI) Prof. R. Schibli; Members of CRS

Nuclide Chemistry Group (CRS) Fan Sozzi and Susan Cohrs

Francesca Borgna

Sarah D. Avni Busslinger Mehta

Laboratory of Radiochemistry (PSI) Dr. N. P. van der Meulen & Group

Institut Laue-Langevin, Grenoble, France Dr. U. Köster & Team

Necsa, Pelindaba, South Africa Dr. J. R. Zeevaart & Team

-

C 3

ISOLDE CERN, Geneva, Switzerland Dr. K. Johnston & Team

University of Gothenburg, Sweden Prof. P. Bernhardt & Team

Zentralklinik Bad Berka, Germany Prof. R. Baum; Dr. A. Singh & Team

Basel University Hospital, Switzerland Prof. D. Wild & Team

Ulrich Peter & Hans Rudolf Wirz-Foundation

Thank you for your Attention!

