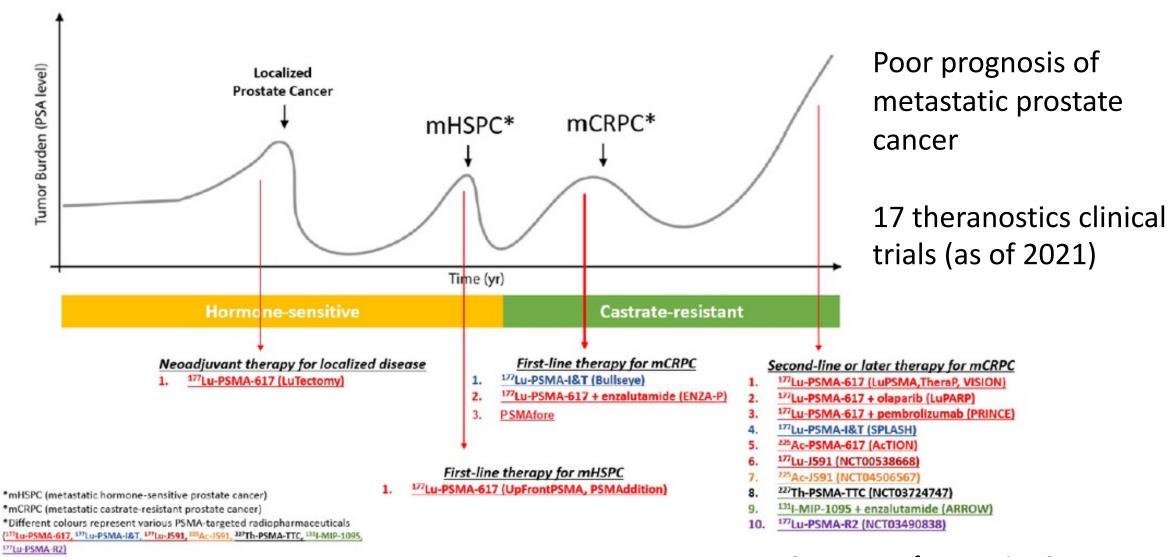

THE EUROPEAN MEDICAL RADIONUCLIDES PROGRAMME A SHORT INTRODUCTION

Lisbon

Thierry Stora, CERN 27 Nov 2023

²²⁵Ac-PSMA in Targeted Alpha Therapy



C. Kratochwil, et al. J. Nucl. Med. 57, 1941 (2016). 225Ac-PSMA-617 for PSMA-targeted α -radiation therapy of metastatic castration-resistant prostate cancer

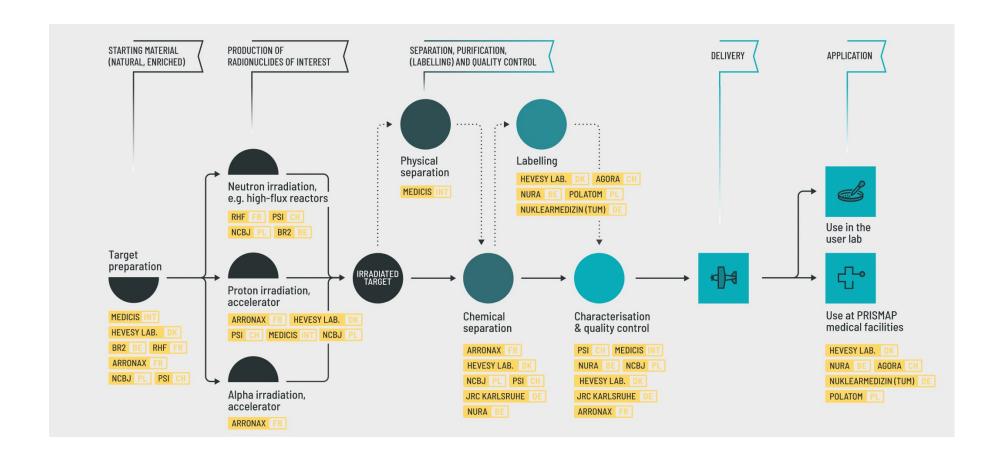
PSMA Theranostics Clinical Trials


Courtesy prof MD J. Prior, CHUV

Are there other research medical radionculides? PRISMAP.EU - The European medical radionuclides programme in a nutshell

Our web interface : https://www.prismap.eu/radionuclides/portfolio/

Parameter	Specification
Half-life	4.04 h
Daughter	Stable Ca-44
Branching Ratio/Decay	94.3% β ⁺ , 5.7% EC
Production	Ca-44(p,n)Sc-44 [or Ca-44(d,2n)Sc-44 at ARRONAX]
Purification	1 or 2 steps column separation
Chemical Form	In 0.05 M HCI, 0.1 M HCI, 4.85 M NaCI/0.13 M HCI or 1 M
	NaOAc
Specific Activity	2 GBq/mg
Radionuclidic Purity	99.8% (0.2% Sc-44m)
Radiochemical Purity	Labelling up to 25 MBq/nmol DOTANOC or DOTATATE
Identification	1157 keV gamma line present
Appearance	Clear and colourless solution
pH	Depends on chemical form
Activity available	Up to 1 GBq
Availability	On demand
Grade	Research grade or preclinical grade, n.c.a.



Supply chain in the back of PRISMAP

https://www.prismap.eu/radionuclides/portfolio/153Sm/

Chemical properties

Sm-153 is a radiolanthanide, usually in trivalent state. It can be radiolabelled with macrocyclic chelators, in particular DOTA. The ionic radius is 95.8 pm.

Nuclear properties

Sm-153 decays by β^- decay with a half-life of 1.9285(2) days to stable Eu-153. It emits a low to medium energy β^- spectrum with 225 keV average energy and 808 keV maximum energy. In addition to β^- emission it shows ample emission of low energy conversion and Auger electrons \bigcirc , thus emitting in total about 2.34 electrons (with energies above 4 keV) per decay.

Moreover, Sm-153 emits γ -rays at 103 keV (29.14%) suitable for SPECT imaging.

The mean electron energy emitted per decay is 265 keV, the mean photon energy per decay is 62 keV ...

Production

Sm-153 is produced by thermal neutron irradiation of enriched Sm-152 oxide targets in the BR2 reactor at SCK CEN. The produced carrier-added Sm-153 is then mass separated at the MEDICIS facility at

Purity grades available

PRECLINICAL

No carrier added (n.c.a.)

Available in n.c.a. form (but r specific activity)

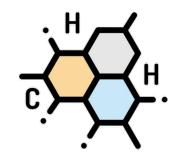
₹ Full specifications

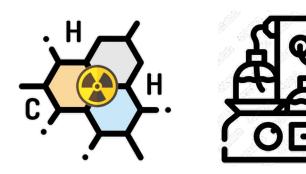
Applications

β-therapy

SPECT

Point of supply


	Parameter	Specifications
	Production route	Sm-152(n,γ)Sm-153
	Daughter	Decays to stable Eu-153: 100% β ⁻
	Half-life	1.93 d
	Processing	Off-line mass separation (CERN-MEDICIS) + 3-step column separation
)	Primary Container	2.5 mL borosilicate glass V-vial with silicon rubber screw cap
n	Product Grade	n.c.a. (but not in theoretical molar activity)
1	Physical Form	Liquid or solid deposit
	Chemical Form	In 0.05 M HCI (evaporation to dryness is also possible)
	Radioactive	
	Concentration (gamma	> 50 MBq/ml
	spectrometry)	
	Appearance	Clear colourless solution
	Radionuclide	
	identification (gamma	70 keV, 97 keV and 103 keV gamma lines present
	spectrometry)	
	Radionuclidic Purity (gamma spectrometry)	>99.99%
	Chemical purity (ICP- OES)	n.a.
	Molar activity (ICP-	280 GBq/µmol Sm at time of mass separation (>11% of
	OES)	theoretical maximum)
	Apparent Molar Activity	Labelling up to 50 MBq/nmol p-SCN-Bn-DOTA and DOTATATE
	Microbiological quality	n.a.
		<u> </u>



Experimental services

Vector & chelator

Radiolabelling & QC

Preclinical studies

Regulatory documents for clinical studies

GMP manufacturing and documentation

Clinical trial

Where are the projects coming from?

https://www.prismap.eu/access/user-projects/

In vivo cellular & molecular imaging lab (ICMI)

VU Brussels
Imaging and Pathology
KU Leuven
Molecular Imaging Center
Antwerp

CZECH Rep.

Pharmaceutical Radiochemistry

TU Munich
Radiopharmaceutical Cancer Research

Dresden (/CZ)

BELGIUM

CZECH Rep.

UGA – Inserm Radiopharmacy FRANCE
La Tronche Bordeaux

CEMHTI Radiochemistry Radiochemistry

Orleans Hopital Frederic Joliot

Inserm Orsay

Montpellier (/PT)

Fondazione IRCCS Istituto Nazionale dei Tumori Milano

Dep Molecular Biotechnology Health Sciences,

Torino

Radiochemistry unit,

Hospital Gregorio Marañón

Madrid

Biomedical Engineering and Imaging Science

London

CZECH Rep.

GERMANY

FRANCE

PORTUGAL

AGORA

AGORA

ARRONA

ARRONA

RHF

ITALY

SPAIN

UK

ES

USA

https://www.prismap.eu/access/user-projects/

SE

PL

+17 projects selected in a single call last week!

1st publication accepted in JNM

Terbium-161 over Lutetium-177 more stable GRPR Ligand— A Preclinical Evaluation

Improved FAP-radiotheranostics for personalized cancer treatment (211At)

Phantom measurements quantitative 225Ac- (micro)SPECT imaging (213Bi)

Feasibility of increased 211At production by 210Po assessment

Imaging of 165Er

AU

NUKLEARMEDIZIN

POLATOM

Selective oncological theragnostic based on exosomes (161Tb)

161Tb-PSMA cell targeting treatment of prostate cancer biochemical recurrence

Dual 152Tb/149Tb radiolabeling for diagnostic and theranostic applications

Zebrafish embryo as a novel model to evaluate the efficacy of short range emitters used for targeted radionuclide therapy

New chelators for complexation of medically useful lanthanide and actinide radioisotopes

T. Stora, CERN – CM6– Nov 2023

Our objectives

- Provide access to new radionuclides and new purity grades for medical research
- Create a common entry port and web interface for the starting research community
- Enhance clarity and regulatory procedures to promote research with radiopharmaceuticals
- Unlock the biomedical research through better data on radionuclides
- Ensure the long-term sustainability of PRISMAP

LISBONNE

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008571 (PRISMAP).