

PRISMAP school on radionuclide production Ion sources for ISOL

Mia Au

CERN SY-STI

28 May 2024

SY Accelerator Systems

M. Au | PRISMAP Summer School 2024 | Leuven

Ion sources for ISOL - Outline

What?

• Broadly: a device to create a beam of charged particles

Why?

- Charged particles respond to electric and magnetic fields, allowing the manipulation of particle beams
- Ion sources define important properties of the particle beam:
 - Type of particle
 - Intensity (number of particles)
 - Energy of the particles
 - Position and velocity (shape and emittance)
 - Number of charge units per particle (charge state)
 - Time structure of the particles

How?

• This lecture 🙂

Accelerator Systems

SY

ISOL Step 3: Ionization

Ionization potential (IP) / ionization energy (IE)

- the energy needed to remove an electron from an atom (or ion)
 - First IP: energy to ionize the neutral atom
- The IP depends on the electronic "shell structure" of the atom

[1] www.ptable.com

[2] Graph of first ionization energies in eV (https://commons.wikimedia.org/wiki/File:First_Ionization_Energy_blocks.svg)

ISOL Step 3: Ionization

Ionization potential (IP) / ionization energy (IE)

- the energy needed to remove an electron from an atom (or ion)
 - First IP: energy to ionize the neutral atom
- The IP depends on the electronic "shell structure" of the atom

[1] www.ptable.com

SY

Accelerator Systems

[2] Graph of first ionization energies in eV (https://commons.wikimedia.org/wiki/File:First_Ionization_Energy_blocks.svg)

ST

ISOL Step 3: Ionization

*	57	58	59	60	61	62	63	64	65	66	67	68	69	70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	H0	Er	Tm	Yb
**	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	AC	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

cern.ch/isolde-yields

Ion sources

- Surface ionization
- Electron impact ionization
- Resonance laser ionization

28.05.2024

lonization

Mechanisms, processes and interactions

References and literature:

- 1. The Physics and Technology of Ion Sources 2nd edition Ian G. Brown (2004), WILEY-VCH
- 2. Handbook of Ion Sources, B. Wolf (1995)

Plasmas

Ionization mechanisms

Surface interactions

Beam formation and extraction

1

2

3

4

Plasmas and their parameters

Plasma: "fourth state of matter" – instead of molecules, composed of ions, electrons, and neutrals **Collisions** Density

- electron density n_e , ion density n_i and neutral • density n_n
- "charge neutrality" : $\sum q_i n_i = n_e$ •
- Ionization fraction: $\beta = \frac{n_i}{n_i + n_n}$ •

Temperature

- Typical units of electron volts (eV) • 1 eV = 11 600 K
- In an isotropic plasma at thermal equilibrium, the ٠ Maxwell-Boltzmann distribution leads to:

•
$$\overline{v_e} = 67\sqrt{T_e} \left[\frac{\mathrm{cm}}{\mathrm{\mu s}}\right]$$
 $\overline{v_i} = 1.57\sqrt{\frac{T_i}{A}} \left[\frac{\mathrm{cm}}{\mathrm{\mu s}}\right]$

electrons, ions, and neutrals may have different • temperatures: T_e , T_i , T_n

- Kinetic theory of gases \rightarrow plasmas
- Mean free path $\lambda = \frac{1}{n\sigma}$
- collision time τ (collision frequency $\upsilon = \frac{1}{\tau}$) $\tau = \frac{1}{n\sigma v}$
- Collision times ~ns to ms

Frequency

Oscillations of electrons and ions in response to small deviations away from charge neutrality

$$\omega_e^2 = \frac{e^2 n_e}{\varepsilon_0 m_e} \qquad \qquad \omega_i^2 = \frac{q^2 e^2 n_i}{\varepsilon_0 m_i}$$

Provides the supply of charged particles

Electron impact ionization

- collisions of electrons with atoms or molecules, where ionization to charge state i can happen for $E_e \ge \epsilon_i$
- Typical cross-section maximums around $E_e \approx 3.5\epsilon_i$

Multiple ionization

- Removal of multiple electrons: "multiply-ionized", "multiply-charged", "highly charged ions"
- Single or multiple (step-wise collisions)

Electron impact in plasmas

• Electron temperature
$$T_e$$
: $\overline{v_e} = \sqrt{\frac{8k_B T_e}{\pi m_e}}$ and $\overline{E_e} = \frac{3}{2}k_B T_e$

- Number of electron impact events:
 - Plasma electron density n_e or electron current $j_e = n_e v_e$

28.05.2024

• Required ion confinement time:

SY

Accelerator Systems

$$\tau_i(q) = \sum_{k=0}^{q-1} \frac{1}{n_e \langle \sigma_{k,k+1} v_e \rangle}$$

Ion impact ionization

Charge exchange

- Collisions between ions and atoms where an electron is exchanged
- Maximum ionization cross-sections occur when the energetic particle has a similar speed to the orbital electron – requires high energy ions compared to electron impact

Double charge exchange

- Single step or stepwise exchange of multiple electrons
- negative ion production from positive ion beams
- Alkalis (Na, K, Rb, Cs) can do stepwise double charge exchange
- Alkali-earths (Mg, Ca, Sr, Ba) can do single-step double charge exchange

28.05.2024

SY

Accelerator Systems

Chemical ionization

- "soft" ionization technique produces ions with little excess energy, reduced fragmentation for molecules (M)
- Typically a gas-phase acid-base reaction using an ionized reagent gas to react with and ionize an analyte

Reagents

• Ex: Methane CH₄ (PA 5.7 eV) isobutane C₄H₁₀ (PA 8.5 eV) ammonia NH₃ (PA 9.0 eV)

28.05.2024

Reactions

- Proton transfer ("protonation")
- Adduct formation
- H- transfer

SY

• Charge exchange

Accelerator Systems

[1] Harrison Chemical Ionization Mass Spectrometry, 2nd Edition (1992)

Field ionization

Field desorption

- electric fields can be used to ionize neutrals
 - Volatile species
- Sharp points enhance field intensity

Ionization from excited states

- ionization of highly excited atoms in a wellcontrolled static electric field
- Lower required fields

~10⁹-10¹⁰ V/m n n n d = 1mm $V = \sim 10^{6} - 10^{7} \text{ V}!$ Continuum ϵ_i Excited states Ground n state

[1] Beckey H.D. Field ionization mass spectrometry. Research/Development, 1969, 20(11), 26

28.05.2024

SY

Accelerator Systems

Photoionization

- Photons can eject electrons from atoms or ions if $E_{\gamma} \ge \epsilon_i$
 - $\lambda \approx 1\,200$ nm for $E_{\gamma} = 1 \text{ eV}$
 - Single-photon ionization: vacuum UV or soft X-rays

Stepwise photoionization

- Excitation of an electron through a series of electronic transitions that cumulatively give $E_{\gamma,total} \ge \epsilon_i$
- Non-resonant ionization to the continuum
- Auto-ionizing states (AIS)
- Rydberg levels

SY

Accelerator Systems

[1] Fedosseev et al., (2017) J. Phys. G Nucl. Part. Phys. 44 (2017) 084006 [2] RILIS Elements (2024), <u>https://isolde-rilis2.web.cern.ch</u>

28.05.2024

Kinetic ejection

Ejection of particles from surfaces when solid material is bombarded with high enough energy

Laser ablation

- Photons in a laser beam impart energy to electron and lattice • components of a solid - not photoionization
- Low flux: heated material at the surface evaporates or sublimates
- High flux: heated material is converted to a plasma: ion • production
- Dependence on laser pulse-length •

Sputtering

- Atoms from a solid target are released by bombardment with energetic ions
- Minimum energy required to remove an atom from the target •

28.05.2024

SY

Electron sources

Work function ϕ_W

• Minimum energy required to eject an electron from the surface

Low work function materials

- Dispenser cathodes (ex. porous W with BaO, CaO)
- Coatings (ex. Cs, ...)
- Single crystals (ex. LaB₆, CeB₆)

Photoemission

- Photocathodes for electron emission
- Sensitive to surface conditions and vacuum requirements

[1] A. Einstein, Analen der Physik, 322 (1905) p 132 (in German) Photoelectric effect [1] Energy = $hf_0 = \phi_W$ $eff_{quantum} = \frac{n}{r_0}$

28.05.2024

Example: scanning	electron	microscope	(SEM)
			· /

	Tungsten hairpin	CeB ₆ crystal	Schottky FEG	
Emission mechanism	Thermionic	Thermionic	Electron Tunnelling	
Lifetime	100 h	1500 h	>10,000 h	
Tip emitting diameter	100 µm	25 µm	100 nm	
Resolution @30 kV	4 nm	3 nm	1 nm	
Resolution @1 kV	50 nm	25 nm	5 nm	
Low-kV imaging (<5 kV)	Yes	No	Yes	
Vacuum	10 ⁻¹ – 10 ⁻⁵ mbar	10 ⁻⁷ mbar	10 ⁻⁹ mbar	
Cost of ownership	Lowest	Medium	Highest	

 Table 1: Comparison of electron source characteristics for SEM.

https://www.nanoscience.com/blogs/which-electron-source-is-best/

Thermionic emission

 Emission of charge carriers from a surface due to thermal energy

Electron emission from surfaces

• electron gas in a metal at a given temperature: Richardson-Dushman equation [1,2]

Emission in electric fields

- Schottky effect [3]: moderate electric fields E lower the potential barrier for electrons to escape the hot surface by an amount ΔW
- Field emission/Fowler-Nordheim tunnelling [4]: strong Efields make the potential barrier thin enough for electrons to tunnel through

28.05.2024

[1] O.W. Richardson, Phil Mag Ser 6 28
(1914) p 633
[2] S. Dushman, Phys Rev 21 (1923) p 623

[3] W. Schottky, Z f Physik 14 (1923) p 63 [4] R.H. Fowler, L. Nordheim, Proc R soc London A 119 (1928) p 173

Accelerator Systems

Ionization at surfaces

Collisions of electrons and atoms can cause ionization •

Langmuir equation [1]

Ratio of ions to neutrals desorbing from a surface

Saha equation [2]

- derived for the degree of ionization in the sun •
- equilibrium of an ionized gas at a given temperature •

Saha-Langmuir equation [3,4]

 $n_i \approx n_e$: quasi-neutrality

Accelerator Systems

- *P* : pressure •
- Plasma sheath formation shields wall potentials

[1] I. Langmuir, Phys. Rev. 2 (1913) p 450 [2] M. N. Saha, Philosophical Magazine Series 6. 40 (238): 472 (1920) [3] A. Latuszynski and V. I. Raiko, Nucl. Instr. and Meth. 125 (1975) 61. [4] R. Kirchner and Piotrowski, NIM B 153 (1978) p 291

28.05.2024

 $\left\{ \alpha = \frac{n_1}{n_0} = \frac{g_1}{g_0} e^{-\frac{W - \epsilon_1}{k_B T}} \quad \beta = \frac{n_1}{n_1 + n_0} = \frac{\alpha}{1 + \alpha} \right\}$

 $\frac{n_{i+1}n_e}{n_i} = \frac{2}{\Lambda^3} \frac{g_{i+1}}{g_i} e^{-\frac{\epsilon_{i+1}-\epsilon_i}{k_B T}}$

Λ : Electron de Broglie wavelength $\Lambda = \sqrt{\frac{h^2}{2\pi m_e k_B T}}$

 $\alpha = \frac{n_1}{n_0} = \frac{g_1}{g_0} A_0 T^2 \frac{1}{q_e n_1} \sqrt{\frac{2\pi m}{k_B T}} e^{\frac{-\epsilon_1}{k_B T}}$

 ϵ_i : Energy to remove *i* electrons from neutral species

 n_i : density of ions in charge state i

 β : ionization $\beta = \frac{n_1}{n_1 + n_0} = \frac{\alpha}{1 + \alpha}$

 n_e : density of electrons

Plasma boundaries

Screening effect

• Plasma particles interact by electromagnetic interactions

Plasma sheath

SY

Accelerator Systems

- Boundary layer formed at interfaces between plasmas and walls
- Wall acquires a charge
- Plasma acquires a potential respective to the wall—not locally charge neutral—and redistributes to cancel external fields

28.05.2024

- Sheath thickness = shielding distance
 - Plasma only: Debye length $\lambda_D = \sqrt{\frac{\varepsilon_0 k_B T_e}{e^2 n_e}}$ [1]
 - With an applied potential: $d_{sheath} = \lambda_D \sqrt{\frac{V_{applied}}{k_B T_e}}$

[1] P. Debye, E. Hückel, (1923). Physikalische Zeitschrift. 24 (9) p 185–206.

 $=\frac{|q_1q_2|}{4\pi\varepsilon_2 r^2}$

Magnetic effects

Gyro-frequencies

- Precession of ions and electrons •
- Collision frequency $v_{i,e} \ll \omega_{cyclotron,i,e}$ •

Magnetic and plasma pressure

- $P_{mag} = \frac{B^2}{2\mu}, \ \mu = \frac{1}{2} \frac{m v_{\perp}^2}{B}$
- $P_{plasma} = n_e k_B T_e + n_i k_B T_i$
- $P_{plasma} \ll P_{mag}$ ٠
 - magnetic confinement •

SY

Space charge

A collection of charged particles in a region of space, so that the extra charge is considered to be distributed across the region

Space-charge-limited current

- Child's law, or "three-halves power law" [1] •
- Usual assumption: particle velocity is 0 at the surface •
 - Generalization for nonzero initial velocities [2] •

Application to electron currents

- Cylindrical geometries [3] -> "Child-Langmuir Law" •
- At some voltage, the operation may transition from the space-charge limited case into the emission limited case

[1] C.D. Child, Phys Rev Lett 32 (1911) p 492 [2] B. Conley, Masters thesis MIT, Cambridge (1995) p 24 [3] I. Langmuir, Phys. Rev. 2 (1913) p 450

SY

Beam formation

Particle emission

• Emission of charged particles into an acceleration gap

Child's law [1]

- Infinite emission surface
- Non-relativistic

Pierce geometry [2]

- Finite-size emitter
- Electrodes shaped to form the potential at the beam boundary

28.05.2024

• cylindrical

SY

[1] C.D. Child, Phys Rev Lett 32 (1911) p 492 [2] J.R. Pierce, J Appl Phys 11 (1940) p 548

Accelerator Systems

Recap

Ionization mechanisms, processes and interactions

References and literature:

- 1. The Physics and Technology of Ion Sources 2nd edition Ian G. Brown (2004), WILEY-VCH
- 2. Handbook of Ion Sources, B. Wolf (1995)

SY

Plasmas

Ionization mechanisms

Surface interactions

Beam formation and extraction

1

2

3

4

Surface ion sources

1

2 Resonance laser ion sources

ISOL ion sources

3 Electron bombardment ion sources

A brief overview

4 Negative ion sources

References and literature:

1. R. Kirchner, Review of ISOL target—ion-source systems (2003) NIM B, 204, p. 179

5 Other ion sources

Ion source properties for RIB production

Efficiency

Radioactive isotopes in / radioactive ions out •

Universality

Variety of available ion beams ullet

Selectivity

Purity, contaminant suppression

Simplicity

Operational complexity, free parameters ۲

28.05.2024

Reliability

SY

Operation limits, failure modes ۲

Maximum intensity

"brightness" •

Emittance and energy spread

Beam size and shape, momentum distribution

Ion source properties for RIB production

Considerations for RIBs

- Short half-lives short residence times
- High radiation environments
- Operational periods few weeks, facility dependent

Surface ion sources

- Hot cavity ion sources have been used since the 1970s and are still being studied and developed
 - Simple and robust construction, short residence times radioactive ion beams \bullet

[1] M. Turek et al, Rev. Sci. Instrum. 83, 023303 (2012) [2] M. Huyse et al., NIM B 215 (1983) p 1-5 [3] R. Kirchner and Piotrowski, NIM B 153 (1978) p 291

SY

Surface ion sources

- Hot cavity ion sources have been used since the 1970s and are still being studied and developed
 - Simple and robust construction, short residence times radioactive ion beams

Developments in surface ion sources

Temperature homogeneity

• Engineering heating to prevent condensation [1,2]

Contaminant suppression

- Isothermal vacuum chromatography
 - Alkali suppression: quartz glass transfer line [3,4]

[1] M. Manzolaro et al., Rev. Sci. Instrum. 87, 02B502 (2016)
[2] S. Hurier et al., First ion source at ISOL@MYRRHA with an improved thermal profile - Theoretical considerations ICIS'23 (2023)
[3] U. Köster et al., NIMB, 266 (2008) p. 4229
[4] Bouquerel, E, et al. Eur. Phys. J. Spec. Top. 150, 277–280 (2007).

SY

Accelerator Systems

28.05.2024

Surface ion sources

Properties

- Efficiency: 100% for $\epsilon_i \leq 5$ eV, few % for $\epsilon_i \leq 6.5$ eV •
- Used for alkali and alkaline earths, rare earths •
- molecules as BaF, SrF, RaF •
- Short delay time (half-lives as short as 10 ms)

Source material	Work function [eV]
Molybdenum	4.15
Tantalum	4.12
LaB ₆	2.5-2.7
GdB ₆	1.5-2.7
SrVO ₃	1.79 (predicted)

Positive and Negative Surface Ion Source

SY

Surface ion sources – properties for ISOL

Questions about surface ion sources?

Resonance Ionization Laser Ion Source (RILIS)

V.I. Mishin et al. / Chemically selective laser ion-source **RILIS** [2-5] MASS-SEPARATOR + 60 KV Step-wise resonant excitation . **Element-selective** • Target Quartz window Ionizer V_{dc} PROPOSAL of the Institute of Spectroscopy, Acad.Sci. USSR for experiments with ISOLDE-CERN Facility (V. S. Letokhov and V. I. Mishin) LASER PHOTOIONIZATION PULSED SOURCE OF RADIOACTIVE ATOMS

28.05.2024

[1] Letokhov and Mishin (1984)
[2] Fedosseev et al., J. Phys. G Nucl. Part. Phys. 44 (2017) 084006
[3] Marsh et al., Rev. Sci. Instrum. 85, (2014) 02B923
[4] Mishin, Fedoseyev et al., NIM B 73 (1993) 550
[5] Alkhazov et al., NIM A 306 (1991) 400

SY

Accelerator Systems

RILIS lasers

RILIS at CERN-ISOLDE

28.05.2024

Slide courtesy of C. Bernerd (2023) Introduction to RILIS: RILIS @CERN, **ISOLDE** workshop 2023

Wavelength (nm)

SY

M. Au | PRISMAP Summer School 2024 | Leuven

Resonance laser ionization in hot cavities

28.05.2024

ST

SY

Accelerator Systems

M. Au | PRISMAP Summer School 2024 | Leuven

Developments in RILIS ion sources

Repeller

Metal mirro

electrode

High throughput ion source [1]

 High ion load → breakdown of confinement potential

Laser Ion Source and Trap (LIST)

- Implementation at CERN-ISOLDE [2]
- Suppression of surface ions

Laser developments

- Frequency range
- Tunability
- Power
- Stability

SY

- Operational simplicity
- Not just for ion sources

Accelerator Systems

RILIS-type ion sources – properties for ISOL

Questions about resonance ionization laser ion sources?

Electron bombardment ion sources

Nielsen-type ion source

- A filament contained in a magnetic field which confines • electrons, ionization via plasma discharge [1]
- Modified to protect the fragile cathode [2] •

Modified Nielsen ion source

- reduced dimensions to increase temperature and reduce • condensation – higher efficiencies [3]
- required stringent control of gas injection to sustain plasma • discharge.

Forced Electron Beam Induced Arc Discharge (FEBIAD) ion source

- Electron extraction by a grid biased at the anode voltage [4] •
- Addition of a transfer line, combined transfer line and cathode • heating [5].

28.05.2024

[1] K.O. Nielsen NIM 1(6) (1957), p. 289 [2] R. Kirchner and E. Roeckl NIM 127(2) (1975), p. 307 [3] R. Kirchner and E. Roeckl, NIM 133(2) (1976), pp. 187 [4] R. Kirchner and E. Roeckl NIM 139(C) (1976), p. 291 [5] S. Sundell and H Ravn. NIM B 70 (1992) p.160

SY

FEBIAD-type ion sources

Versatile Arc Discharge Ion Source (VADIS)

28.05.2024

- Modified FEBIAD ion source with a molybdenum grid [2]
- Hot, warm, and cold transfer lines

(STI

Neutral particles

SY

Accelerator Systems

MK-series [1]

M. Au | PRISMAP Summer School 2024 | Leuven

Developments in FEBIAD-type ion sources

(some) failure modes

- Coated insulators
- Grid melting
- Cathode overheating and deformation: short-circuits or open circuits

Temperature optimization

• Cathode and anode [1,2]

Non-destructive 3D reconstruction by X-ray computed tomography (ZEISS METROTOM 1500/225 kV) – images courtesy of S. Rothe

SY Accelerator Systems

M. Au | PRISMAP Summer School 2024 | Leuven

Developments in FEBIAD-type ion sources: molecular beams

Sideband extraction

• Operation of mass-separator on an isobar-free mass setting [1,2]

Volatilization

• Extraction of volatile compounds of otherwise refractory elements [1,2]

[1] J. Ballof, PhD thesis, JGU Mainz (2021) [2] M. Au, PhD thesis, JGU Mainz (2023)

Developments in FEBIAD-type ion sources: molecular beams

Sideband extraction

Operation of mass-separator on an • isobar-free mass setting [1,2]

Volatilization

Extraction of volatile compounds of otherwise refractory elements [1,2]

Technical developments

- Robustness to reactive gas • injection
- Controlled injection from external ovens

[1] J. Ballof, PhD thesis, JGU Mainz (2021) [2] M. Au, PhD thesis, JGU Mainz (2023)

SY

HX⁺

NaX⁺

KX⁺

Н

Li Be

Na Mg

Κ

Rb Sr

Fr Ra

Cs Ba

Sc Ca

Ti

 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67

 La
 Ce
 Pr
 Nd
 Pm
 Sm
 Eu
 Gd
 Tb
 Dy
 Ho
 90 91 92 93 94 95 96 97 98 Th Pa U Np Pu Am Cm Bk Cf

He

Kr

Xe

At Rn Astatine Radon

Ts | Og

C

Ν 0

Sb

Bi

FI MC

XBr⁺

Te

Po

Lv

Si

Cr Mn Fe Co Ni Cu Zn Ga Ge As Se

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

NX⁺ XO⁺ XCO⁺ XS

Au and Ballof, (2022) Zenodo 10.5281/zenodo.6884293

Pt Au Hg TI Pb

Np Pu Am Cm Bk Cf Es Fm Md No Lr

¹¹¹ Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh

Ta W Re Os Ir

Resonance laser ionization in FEBIAD-type ion sources

VADLIS

- RILIS inside a VD5 geometry [1] •
 - Central potential well \bullet
 - Repelling effect of anode • voltage
 - Reversible polarity • cathode
- Addition of biasable extraction CATHODE 2000 °C • plates [2]

[1] T. Goodacre et al, NIM B 376 (2016) p.39 [2] Y. Martinez Palenzuela et al., NIM B 431 (2018) p. 59

End plates

ANODE CAVITY

ANODE 0-200 V

Grid

CATHODE SUPPORT

30 kV

28.05.2024

(a) 600

500

 $I_{current} = 340 \text{ A}$

50

50

Laser ion curre VADIS ion curren

Total ion curre

100

Anode voltage (V)

150

150

ADIS ion cur

Total ion curre

Anode voltage (V)

100

Photocathode sources

Photocathode electron sources

- High pulse energy lasers, low ϕ_W surfaces •
- Ex. CERN's Compact Linear Collider (CLIC)
 - CALIFES [1] photo-injector [2]: ٠
 - Cs₂Te with UV (262 nm) laser, > 370 nJ/pulse [3]

Photocathode ion sources

- Room temperature operation of FEBIAD [4]
- Volatile gases and molecules
- Quantum efficiency of copper .

[1] J. L. Navarro Quirante, et al. 27th International Linear Accelerator Conference (LINAC14), p.MOPP030 (2014) [2] J. Brossard et al., Conf. Proc.: EPAC 2006, Edinburgh, Scotland. (2006) [3] E. Granados et al., Capabilities and performance of the CLEAR facility photoinjector, CERN, "CERN-OPEN-2020-002" (2019) https://cds.cern.ch/record/2705786 [4] J. Ballof, et al., J. Phys. Conf. Proc. ICIS2021, 2244 (2022) 012072

Figure 15: View of the beam transport between laser room and CLEX experimental area.

SY

FEBIAD-type ion sources – properties for ISOL

Questions about FEBIAD-type ion sources?

28.05.2024

Negative ion sources

Surface ion sources

- Low work function surfaces: •
 - LaB_6 pellet [1,2]
- Surface poisoning ٠

Kinetic ejection negative ion source (KENIS)

Cs sputtering [3]

VADIS in negative mode

- Cs_2CrO_4 •
- Efficiency "≈ 2.8 × 10⁻⁴ % at most" [2] •

[1] B. Vosicki et al. NIM Phys. Res. 186.1 (1981), p. 307 [2] D. Leimbach, PhD thesis, JGU Mainz (2021) [3] G.D Alton et al. NIMB 170.3 (2000), p. 515 [4] R. Middleton. NIM Phys Res. 214.2 (1983), pp. 139-150. 90580-X.

SY

M. Au | PRISMAP Summer School 2024 | Leuven

ECR ion sources

Electron cyclotron resonance (ECR) ion sources (ECRIS) •

Principle

- Magnetic field and injection of RF or microwaves
- Plasma heating by resonantly exciting electrons :
 - $\omega_{ECR} = 2\pi f_{ECR} = \frac{eB}{m}$

Examples

- CERN-ISOLDE helicon ion source [1]
 - efficiencies ~10% [2,3] CO: 2.5% Ar: 4% •
- Commercial ECRIS [4] •

[1] M. Kronberger, et al., NIM B, 317 (2013) p. 438 [2] F. Chen, in: O.A. Popov (Ed.), High Density Plasma Sources, Noyes, Park Ridge, NJ, (1995) [3] P. Suominen, T. Stora, ISOLDE Newsletter, 20, Spring (2011) [4] https://www.pantechnik.com/ecr-ion-sources/

SY

Electron bombardment ion sources and traps

Ion beam bunching and cooling

Radiofrequency quadrupole cooler-buncher (RFQ-cb) [1]

Accelerator Systems

Charge breeding: EBIS / EBIT

Electron beam ion source (EBIS) / Electron beam ion trap (EBIT) [2,3]

Other ion sources – there are many!

Plasma discharge ion sources [1]

- Magnetron .
- Multicusp •
- Penning/Phillips ion gauge (PIG) •
- Plasmatron, duoplasmatron
- RF •

Neutral beam injectors (NBIs)

Ionization of fast neutral beams by plasma collisions

H- ion sources

- Surface production
- Volume production
- at CERN: LINAC4 [2,3]

M. Au | PRISMAP Summer School 2024 | Leuven

Intensity: 35 mA

Figure 1.12 - Cross-sectional view of the Linac4 H⁻ ion source with its plasma generator and extraction system.

50

Ion source comparisons

Accelerator Systems

Adapted from Y. Martinez Palenzuela, K. Chrysalidis, B. Marsh et al., (2017) Int. Conf. Ion. Sources presentation - Young Speaker Award

lon source applications

In the ISOL community

A small part of a big field

RIB production and considerations

2 In-source spectroscopy

3 **Fundamental properties**

Production of medical isotopes 4

SY

1

Catherall et al. (2017) J. Phys G 44, 094002 isolde.web.cern.ch

ISOL "On-Line":

- Production
- Release
- Ionization
- Extraction

M. Au | PRISMAP Summer School 2024 | Leuven

ISOL Step 4: Mass separation Catherall et al. (2017) J. Phys G 44, 094002 isolde.web.cern.ch **Front Ends** HRS Frontend Mass separator magnets GPS HRS Frontend Mass separator GPS Mass separator ISCOOL

SY

28.05.2024

ISOL Step 5: Delivery to Experiments

Catherall et al. (2017) *J. Phys G* **44**, 094002 *isolde.web.cern.ch*

SY

(STI

ISOL Step 5: Delivery to Experiments Cathera isolde.w

Catherall et al. (2017) *J. Phys G* **44**, 094002 *isolde.web.cern.ch*

(STI

28.05.2024

CERN-ISOLDE

>1000 isotopes and isomers

74 elements

Ballof *et.al,* (2020) *NIM B* **463**, 211-215 *cern.ch/isolde-yields*

N:126

www.nucleonica.com

Dataset: JEFF-3.1 Nuclear Data Library, NEA (2023)

(ST

110 =

100

Operating ion sources: mass scans

Surface

Low IPs

Surface ionization efficiency

FEBIAD

- High/unknown IPs
- High efficiency

STI

Operating ion sources: time structures

Accelerator Systems

Developing ion sources: diagnostics

(STI)

Molecular formation: identification

28.05.2024

ST

CÉRN

Accelerator Systems

M. Au | PRISMAP Summer School 2024 | Leuven

62

Applications: RILIS as a spectroscopy tool

- For stable and sufficiently small laser linewidth, ionization efficiency is sensitive to hyperfine structure
- Sensitivity to nuclear structure observables: charge radius, electromagnetic moments
- Highlight: shape co-existence phenomenon, odd-even • shape staggering of n-deficient Hg [1]

In-source resonance ionization spectroscopy (RIS) [2]

Resolution limited by Doppler broadening •

LIST and PI-LIST

- Sub-Doppler hot-cavity in-source spectroscopy •
- CERN-ISOLDE implementation [3]

[1] Marsh et al., Nat. Phys. 14 (2018) p 1163 [2] Fedosseev et al., NIM B. 204 (2003) 353 [3] Heinke et al. (2023) NIM B. 541 (8-12)

SY

LETTERS

NATURE PHYSICS

Applications: Ionization potentials

FI-LIST: IP of Yb

 Application of field ionization from excited states in a LIST ion source geometry [1]

Surface ionization efficiency

 Use of surface ionization efficiency expression to perform the first measurement of the IP of superheavy Lr [2]

28.05.2024

noble gases [3]

For species with higher IP:

FEBIAD

M. Au | PRISMAP Summer School 2024 | Leuven

Applications: ionization of medical radionuclides

Actinium-225

- Targeted α -therapy
- Half-life 9.9 days

Production routes

- Collect ${}^{225}Ra \rightarrow {}^{225}Ac$
 - Surface ion source [1,2]
- Collect ²²⁵Ra and ²²⁵Ac
 - Surface ion source +
 RILIS for Ac [1,2]
- Collect only ²²⁵Ac
 - VD5 and molecular sidebands [3]

Figure published in: Kratchowil *et al.* (2016) J. Nucl. Med. **57** 1941-1944

Figure 1 The quadruplet of the ragnostic terbium radioisotopes. [5]

Terbium-149

- Targeted α -therapy and PET
- Half-life 4.1 h

Production routes

- Collect ¹⁴⁹ Dy \rightarrow ¹⁴⁹Tb [4,5]
- Target and ion source development [6]

[1] E. Jajčišinová, *et al., Sci Rep* 14, 11033 (2024)
 [2] Johnson *et al., Sci Rep* 13, 1347 (2023)
 [3] M. Au *et al., PhD thesis, JGU Mainz* (2023)
 [4] C. Müller *et al., EJNMMI Radiopharm Chem* 1 (2017) 5. PMID: 29564382
 [5] Grundler, Johnston, Köster, Müller, Talip, van der Meulen, *IS688 CERN-INTC-P-593 (2023)* [6] W. Wojtaczka *et al., in preparation* (2024)

SY

Accelerator Systems

M. Au | PRISMAP Summer School 2024 | Leuven