

Reactor produced medical radionuclides

Michiel Van de Voorde – PRISMAP School on Radionuclide Production – May 2024

Outline

- Introduction
- Basic concepts
- Production strategies
- Radiochemical processing

- Learning outcomes
 - Know the difference between reactor and accelerator produced radionuclides
 - Basic understanding of how radionuclides are produced in a nuclear reactor
 - Estimating a production yield and evaluating a production strategy

Whole body

- Primary tumors and metastases (18F, 11C)
- Oncology therapy (1311, 177Lu, 166Ho, 90Y)
- Infectious diseases (99mTc, 67Ga, 18F)

Imaging of the salivary glands and the lachrymal tract (Pam Tc)

Thyroid diseases therapy (¹³¹])

Imaging of the thyroid (¹²³I, ¹³¹I, ^{99m}Tc, ²⁰¹TI)

, Blood studies (99mTc, 125I, 51Cr, 59Fe, 67Ga)

Cardiac diseases (99m Tc, 201 TI, 13N, 16O, 18F, 82 Rb)

Breast cancer (^{99m}Tc, ¹⁸F)

Spleen diseases - Biliary function (^{99m}Tc)

Palliative treatment Bone metastases (³²P, ⁸⁹Sr, ¹⁵³Sm, ¹⁸⁶Re, ²²³Ra) Bone scintigraphy (^{99m}Tc, ¹⁸F)

NUCLEAR

Cervix cancer (per Tc)

Deep vein thrombosis (99mTc)

Polycythaemia and thrombocythaemia treatment (³²P)

* Radiosynovectomy - Polyarthritis (knee, hand, shoulder, hip) (109Er, 180Re, 100Y)

DIAGNOSIS & THERAPY

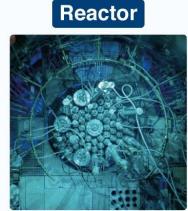
Brain imaging (¹⁸F, ^{99m}Tc, ¹²³I, ¹³N, ¹⁵O, ¹¹C) · Stroke imaging (^{99m}Tc, ¹⁹F, ¹⁵O) Epilepsy (¹²³I, ¹⁸F) Amyloid plaque accumulation (Alzheimer's disease) (¹⁸F, ¹¹C) Parkinson diseases (¹⁸F, ¹²³I)

Leukaemia (³²P) Non-Hodgkin Lymphoma (¹¹¹In) (⁹⁰Y,¹³¹I)

Lung ventilation (^{61m}Kr,^{99m}Tc,¹³³Xe) -Lung perfusion imaging (^{99m}Tc)

Liver imaging (^{99m}Tc, ¹³N, ¹⁸F) * Hepatocarcinoma (¹³¹I, ¹⁸⁸Re, ⁹⁰Y) *

Gastro-intestinal absorption (^{99m}Tc) -Neuroendocrine tumours (^{99m}Tc, ¹¹¹In, ¹⁸F, ⁶⁸Ga) (¹⁷⁷Lu)


Renal filtration studies -Kidney diseases (99mTc, 123|, 131|) Adrenal scintigraphy (99mTc, 18F, 123|, 131|)

Bladder imaging (99mTc)

Prostate cancer (18F, 66Ga, 11C, 111In) (177Lu)

or

Nuclear reaction or Radioisotop

Radioisotope production

Shipment

from reactor

to production facility

Radiochemical grade product

from reactor to production facility

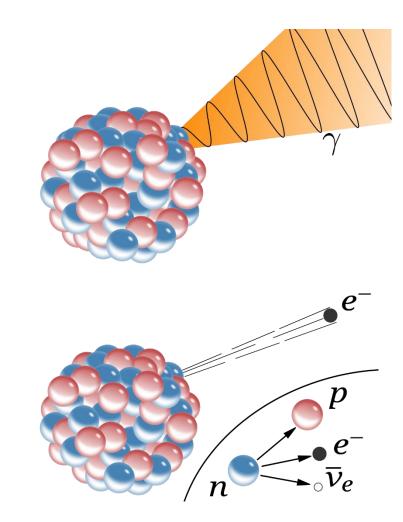
«Active Pharmaceutical Ingredient» (API)

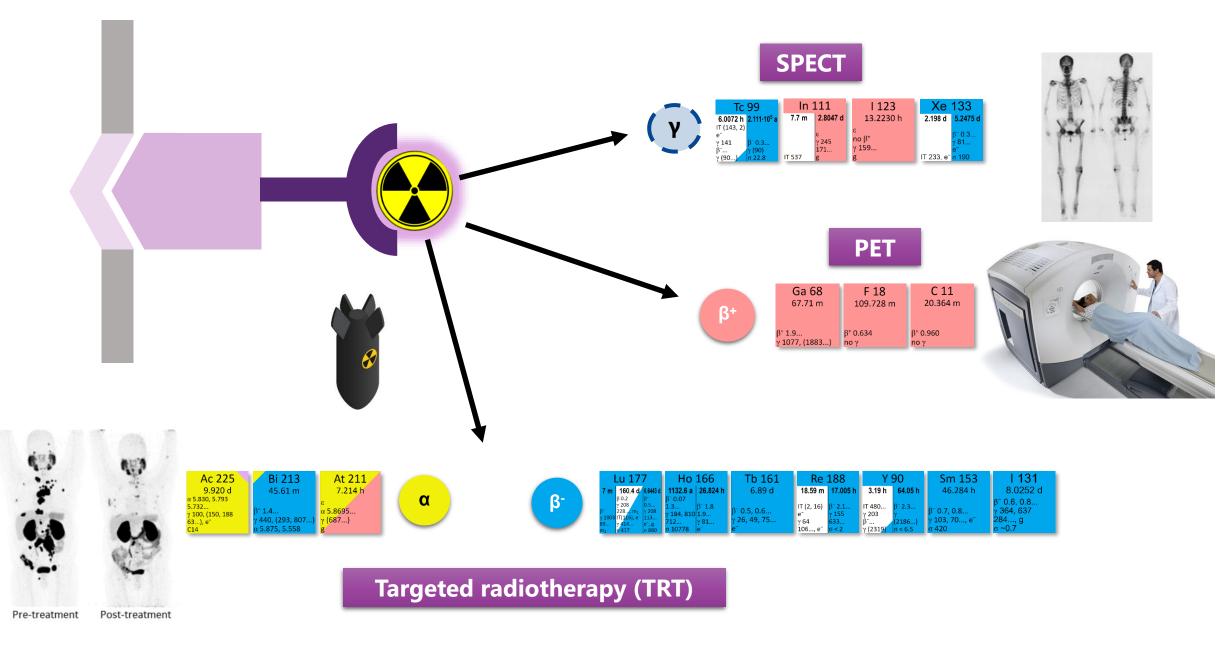
- Purrification
- Quality Control
- Dispensing



Radiopharmaceutical product

- Labeling (if required)
- Dispensing
- Sterilization
- Quality Control
- Packaging
- Shipping


Production methods



General classification

- Radionuclides for SPECT
 - Reactor and cyclotron produced
- Radionuclides for PET
 - Cyclotron produced
- Radionuclides for therapy
 - Reactor produced
 - Naturally occurring
 - Accelerator produced

Sciccen Belgian Nuclear Research Centre

Re 165	Re 166 2.25 s	Re 167	Re 168 4.4 s	Re 169	Re 170 9.2 s	Re 171 15.2 s	Re 172	Re 173 2.0 m	Re 174 2.4 m	Re 175 5.9 m	Re 176 5.3 m	Re 177 14 m	Re 178 13.2 m	Re 179 19.7 m	Re 180 2.46 m	Re 181 20 h	Re 182	Re 183 70.0 d	Re 184	Re 185 37.40	Re 186 2-10 ⁴ = 3.7183 e	Re 187 62,60 4.33*10 ¹⁰ 4	Re 188 18.53 m 17.005 h	Re 189 24.3 h	Re 190
W 164 6.3 s	W 165 5.1 s	W 166 18.8 s	W 167 19.9 s	W 168 50.9 s	W 169 76 s	W 170 2.42 m	W 171 2.38 m	W 172 6.7 m	W 173 7.6 m	W 174 31 m	W 175 35.2 m	W 176 2.5 h	W 177 132.4 m	W 178	W 179 640 m 37.68 m	W 180 0.12 1.8-10 ¹⁹ e	W 181 121.2 d	W 182 26.50	W 183	W 184 30.64	W 185 167 m 751 d	W 186 28.43	23.72 h	W 188 69.78 d	W 189 11.6 m
Ta 163 10.6 s	Ta 164 14.2 s	Ta 165 31.0 s	Ta 166 32 s	Ta 167 80 s	Ta 168 2.0 m	Ta 169 5.0 m	Ta 170 6.76 m	Ta 171 23.3 m	Ta 172 37.0 m	Ta 173 3.14 h	Ta 174 1.04 h	Ta 175 10.5 h	Ta 176 8.1 h	Ta 177 66.36 h	Ta 178 225m 248h	Ta 179 665 d	Ta 180 0.01176 9701090 2.1546	Ta 181 99.98824	Ta 182 1554m 11474d	Ta 183 5.1 d	Ta 184 8.7 h	Ta 185 ^{49 m}	Ta 186 134e 165e	Ta 187 2.3 m	Ta 188
Hf 162 39.4 s	Hf 163 40.0 s	Hf 164 111 s	Hf 165 76 s	Hf 166 6.8 m	Hf 167 2.05 m	Hf 168 25.95 m	Hf 169 3.25 m	Hf 170 16.01 h	Hf 171 235 1216	Hf 172 1.87 a	Hf 173 23.6 h	Hf 174 0.161 2.0-10 ¹⁵ e	Hf 175 70.0 d	Hf 176 5.24	Hf 177 51.4 m 1.09 a 18.50	Hf 178	Hf 179	Hf 180	Hf 181 42.39 d	Hf 182 613m \$210's	Hf 183 1.018 h	Hf 184 481 4.125	Hf 185 3.5 m	Hf 186 2.6 m	Hf 187 ⇒300 ns
Lu 161 77 s	Lu 162	Lu 163 4.1 m	Lu 164 3.14 m	Lu 165 11.8 m	Lu 166 212= 141= 28=	Lu 167 51.5 m	Lu 168	Lu 169 100 s 34.00 h	Lu 170 2.012 d	Lu 171	Lu 172	Lu 173 1.37 e	Lu 174	Lu 175 97.401	Lu 176 2.599 (1816) 1840	Lu 177 Tri 1804 d'Ande	Lu 178 27 n 284 n	Lu 179 4.6 h	Lu 180 5.7 m	Lu 181 3.5 m	Lu 182 2.0 m	Lu 183 58 s	Lu 184 -20 s	Lu 185 ⇒300 ns	Lu 186 >300 ns
Yb 160 4.8 m	Yb 161 4.2 m	Yb 162 18.87 m	Yb 163 11.1 m	Yb 164 75.8 m	Yb 165 9.9 m	Yb 166 55.7 h	Yb 167 17.5 m	Yb 168 0.126	Yb 169 46 x 32018 d	Yb 170 3.023	Yb 171 14.216	Yb 172 21.754	Yb 173 16.098	Yb 174 31.896	Yb 175 4.185 d	1D 1/6 11.41 12.887	Yb 177 641 13118	Yb 178 74 m	Yb 179 7.9 m	Yb 180 2.4 m	Yb 181 ⇒300 ns	Yb 182 ⇒160 ns	Yb 183 ⇒222 ns	Yb 184 ⇒300 ns	Yb 185 ⇒300 ns
Tm 159 9.13 m	Tm 160	Tm 161 30.2 m	Tm 162	Tm 163 1.810 h	Tm 164	Tm 165 30.06 h	Tm 166 7.70 h	Tm 167 9.25 d	Tm 168 93.1 d	Tm 169	Tm 170 128.6 d	Tm 171 1.92 ∎	Tm 172 63.6 h	Tm 173 8.24 h	Tm 174	Tm 175 15.2 m	Tm 176 1.9 m	Tm 177	Tm 178 >300 ns	Tm 179 >300 ns	Tm 180 ⇒300 ns	Tm 181 >300 ns			
Er 158 2.29 h	Er 159 36 m	Er 160 28.58 h	Er 161 3.21 h	Er 162 0.139	Er 163 75.0 m	Er 164 1.601	Er 165 10.36 h	Er 166 33.503	Er 167 2200 1 22.000	Er 168 26.978	Er 169 9.392 d	Er 170 14.910	Er 171 7.516 h	Er 172 49.3 h	Er 173 1.4 m	Er 174 3.2 m	Er 175 1.2 m	Er 176 >300 ns	Er 177 >160 ns	Er 178 ⇒300 ns	Er 179 ⇒256 ns	Er 180 ⇒256 ns			
Ho 157 12.6 m	Ho 158 213= 28= 113=	Ho 159	Ho 160	Ho 161 6.76 a 246 h	Ho 162 6.3m 150m	Ho 163	Ho 164	Ho 165	Ho 166 1122.5. 25.524.5	Ho 167 3.1 h	HO 105 1321 2.93 m	Ho 169 4.6 m	Ho 170	Ho 171 53 s	Ho 172 25 s	Ho 173 5.9 s	Ho 174 3.2 s	Ho 175 1.88 s	Ho 176 >300 ns	Ho 177 ⇒550 ns	Ho 178 ⇒256 ns				
Dy 156 0.056	Dy 157 8.14 h	Dy 158 0.095	Dy 159 144.4 d	Dy 160 2:329	Dy 161 18.889	Dy 162 25.475	Dy 163 24.896	Dy 164 28.260	Uy 165 1.257 m 2.334	Dy 166 81.5 h	Dy 167 6.2 m	Dy 168 8.7 m	Dy 169 78.0 s	Dy 170 55 s	Dy 171 4.1 s	Dy 172 3.94 s	Dy 173 1.43 s	Dy 174 >300 ns	Dy 175 ⇒256 ns	Dy 176 ⇒256 ns					
Tb 155 5.32 d	Tb 156	Tb 157 71 e	Tb 158	Tb 159 100	Tb 160 72.3 d	Tb 161 6.89 d	Tb 162 7.76 m	Tb 163 19.5 m	Tb 164 3.0 m	10 160 2.11 m	Tb 166 25.1 s	Tb 167 19.4 s	Tb 168 8.2 s	Tb 169 5.13 s	Tb 170 960 ms	Tb 171 1.24 s	Tib 172 760 ms	Tb 173 >256 ns	Tb 174 >256 ns				ي.		
Gd 154 2.18	Gd 155 14.80	Gd 156 20.47	Gd 157 15.65	Gd 158 24.84	Gd 159 18.479 h	Gu 160 21.86	Gd 161 3.65 m	Gd 162 8.2 m	Gd 163	Gd 164 45 s	Gd 165 10.3 s	Gd 166 4.8 s	Gd 167 4.26 s	Gd 168 3.03 s	Gd 169 750 ms	Gd 170 410 ms	Gd 171 >256 ns								
Eu 153 52.19	Eu 154 46.0 m (156)	Eu 155 4.753 e	Eu 156 15.19 d	Eu 157 15.18 h	Eu 158 45.9 m	Eu 159 18.1 m	Eu 160	Eu 161 25 s	Eu 162 10.6 s	Eu 163 7.7 s	Eu 164 4.15 s	Eu 165 2.3 s	Eu 166 1.7 s	Eu 167 1.33 s	Eu 168 200 ms	Eu 169 >247 ns					1				
Sm 152 25.74	Sm 153 46.284 h	Sm 154 22.74	Sm 155 22.18 m	Sm 156 9.4 h	Sm 157 8.03 m	Sm 158 5.30 m	Sm 159 11.37 s	Sm 160 9.6 s	Sm 161 4.8 s	Sm 162 2.4 s	Sm 163 1.23 s	Sm 164 1.43 s	Sm 165 980 ms	Sm 166 800 ms	Sm 167 >247 ns		1	L	-		and the second				
Pm 151 28.4 h	128 m 132 m 4/12 m	Pm 153 5.25 m	Pm 154 27 n 17 n	Pm 155 41.5 s	Pm 156 26.7 s	Pm 157 10.56 s	Pm 158 4.8 s	Pm 159 1.5 s	Pm 160 725 ms	Pm 161 1.05 ms	Pm 162 630 ms	Pm 163 430 ms	Pm 164 >247 ns	Pm 165 ⇒247 ns				1	_ N	T					
Nd 150	Nd 151	Nd 152	Nd 153	Nd 154	Nd 155	Nd 156	Nd 157	Nd 158	Nd 159	Nd 160	Nd 161	Nd 162	Nd 163						$\rightarrow 1$	N					

Nuclear transmutation

J_{n.α} 0.0307

σ 100

Ho 150	Ho 151	Ho 152	Ho 153	Ho 154	Ho 155	Ho 156	Ho 157	Ho 158	Ho 159	Ho 160	Ho 161	Ho 162	Ho 163	Ho 164	Ho 165	Ho 166	Ho 167	
23.5 s 72 s	47.2 s 35.2 s	50.0 s 161.8 s	9.3 m 2.01 m ε ε, β* 2.8	3.1 m 11.76 m	48 m	7.6 m 9.5 s 56 m	12.6 m	21.3 m 28 m 11.3 n		3.2 s 5.02 h 25.6 n	n 6.76 s 2.48 h	67.5 m 15.0 m	1.09 s 4570 a	36.6 m 28.8 m	100	1132.6 a 26.824 h	3.1 h	
β† 3.9 ε, β†	α.4.61 β ⁺ 3.5 β ⁺ α.4.52	γ 614 γ 614	γ 109, 366 γ 296, 63 162 689	- 3 70 - C 3 037	e	β	ε β ⁺ 1.2, 1.5	ε, β' IT (67) 2.9 0.9 e γ 218	г IT 206 в*	IT IT (60) ε γ118 e β'		γ 38, 58 ε e β' 1.1		IT (46), e ⁻ ⁸ B ⁻ 1.0		p 0.07 1.3 β ⁻ 1.8 γ 184, 810 1.9	β ⁻ 0.3, 1.0	
γ 803, 653 γ 803, 591 394, 551 653	γ776 γ527 α→ε α→m	$\alpha 4.454 \alpha 4.386 \alpha \rightarrow m \alpha \rightarrow g$	$\alpha 4.011 \alpha 3.910$ $\alpha \rightarrow \epsilon \qquad \alpha \rightarrow m$	γ 335, 412 γ 335, 412 477 873	β ⁺ 2.1 γ 240, 136	γ 366 266 IT (52) γ 266 IT e 138	γ 280, 341, 193 87, 61 e ⁻	γ 406 β ¹ , γ 99 99 839, 218 949 1484 946e e	e ⁻ γ 121, 13 γ 166 310, 253.	2 107 γ 87 879 e 1272 962	γ 26, 103 IT 211, e ⁻ 78e ⁻	ε γ 81 γ 185, 1220 1319 283, 937 ε	s IT 298 no y	γ 37, 57 γ 91, 73	σ 3.5 + 60.9 σ _{n.α} < 2E-5	712 γ 81 σ 10778 e	γ 347, 321 g. m	
Dy 149	Dy 150	Dy 151	Dy 152	Dy 153	Dy 154	Dy 155	Dy 156	Dy 157	Dy 158	Dy 159	Dy 160	Dy 161	Dy 162	Dy 163	Dy 164	Dy 165	Dy 166	
0.490 s 4.20 m	7.17 m	17 m	2.38 h	6.4 h	3.0·10 ⁶ a	9.9 h	0.056	8.14 h	0.095	144.4 d	2.329	18.889	25.475	24.896	28.260	1.257 m 2.334 h	81.5 h	
1T 111, e ⁻ s γ 1179 β*	ε, β⁺	ε, α 4.07 γ 386, 49, 546	ε α 3.628	ε β* 0.9, 1.1												IT 108, e ⁻ β ⁻ 1.3 β ⁻ 0.9 γ 95	8-04.05	
1073, 299 γ 101, 789 β ⁺ , m 1776	7 597 g	γ 586, 49, 546 176	α 5.628 γ 257	γ 81, 214, 100 254, e		ε β ⁺ 0.9, 1.1	σ 33	ε, β*	σ 43	e						1.0 (362) γ 515	β⁻ 0.4, 0.5 γ 82, (426)	
γ (787) g, m	α 4.23	g, m	g	α 3.464	α 2.87	γ 227	σ _{n,α} < 0.009	γ 326	σ _{n,α} < 0.006	γ 58, e ⁻	σ 55	σ 600, σ _{n,α} < 3E-5		σ 134, σ _{n,α} < 2E-5		σ 2000 σ 3600	g	-
Tb 148	Tb 149	Tb 150	Tb 151	Tb 152	Tb 153	Tb 154	Tb 155	Tb 156	Tb 157	Tb 158	Tb 159 100	Tb 160	Tb 161	Tb 162	Tb 163	Tb 164	Tb 165	
2.20 m 60 m ₅	4.2 m 4.1 h ε ε	5.8 m 3.48 h ε, β* 3.0	25 s 17.609 h	IT 160, e ⁻ s	2.34 d	22.7 h 9.994 h 21.5 h	n 5.32 d	5.3 h 24.4 h 5.35 d	1 71 a	10.70 s 180 a	100	72.3 d β ⁻ 0.6. 1.7	6.89 d	7.76 m	19.5 m	3.0 m	2.11 m β⁻ 2.8	St St
β ⁺ 2.0 β ⁺ 3.9 3.0 4.7	β ⁺ α 3.97 α 3.99 β ⁺ 1.8	s, β* 1.5 γ 638	γ 49, 23 β* e ⁻ . ε α 3.41	γ 283 β ⁺ 3.0 s, β ⁺ γ 344, 271	ε, β+	γ 248 ε 347 γ 123 ε 1420 248 β'	e	e',g g g y 534		γ 944 962		γ 879, 299	β ⁻ 0.5, 0.6	β ⁻ 1.4, 2.4	β ⁻ 0.8, 1.3	β ⁻ 1.7, 3.7	y 1179, 539	
γ 784, 395 γ 784, 489 632, 882 1079	γ 796 γ 352 165 165	γ 638, 650 496 438, 827 α 3.49	γ 380 γ 252, 28 831 108		γ 212, 110, 102 170, 83	1420 248 p [*] 123 540 γ 123 IT IT 1274	γ 87, 105, 180 262	β' IT 199 β?? γ 50 1222	ε γ (54), e⁻	IT (110) 80, e ⁻ e ⁻ 8 ⁺ 0.9	σ 23.8	966 σ 570	γ 26, 49, 75 e	γ 260, 808 888	γ 351, 390 494	γ 169, 755, 215 688, 611	1292, 1665 m, g	
Gd 147	Gd 148	Gd 149	Gd 150	Gd 151	Gd 152	Gd 153	Gd 154	Gd 155	Gd 156	Gd 157	Gd 158	Gd 159	Gd 160	Gd 161	Gd 162	Gd 163	Gd 164	β
38.1 h	71.1 a	9.28 d	1.79·10 ⁶ a	120 d	0.20	240.4 d	2.18	14.80	20.47	15.65	24.84	18.479 h	21.86	3.66 m	8.2 m	68 s	45 s	- r
8		ε α 3.016		8	1.08·10 ¹⁴ a	ε γ 97, 103, 70								β ⁻ 1.6, 1.7 γ 361, 315		0-		— ~
ρ' γ 229, 396	α 3.183	γ 150, 299		α 2.60 γ 154, 243	α 2.147, σ 755	σ 22460		σ 60330		σ 254000		β- 1.0		102	β- 1.0	ρ γ 288, 214		_ α
929	σ 9600	347	α 2.726	175	σ _{n,α} .0.007	σ _{n,α} 0.033	σ 85		σ1.8	σ _{n,α} 0.00055	σ 2.22	γ 364, 58	σ1.4	σ 19000	γ 442, 403	1562, 1685	β-	
Eu 146	Eu 147	Eu 148	Eu 149	Eu 150	Eu 151	Eu 152	Eu 153 52.19	Eu 154	Eu 155	Eu 156	Eu 157	Eu 158	Eu 159	Eu 160	Eu 161	Eu 162	Eu 163	β
4.61 d	24.1 d ε. β⁺	54.5 d	93.1 d	12.8 h 36.9 a β⁻1.0 s	47.81	96 m 9.312 h 13.517 a	3 52.19	46.0 m 8.601 a β 0.6, 1.8.	4.753 a	15.19 d	15.18 h	45.9 m	18.1 m	30.8 s 42.6 s β ⁻ 2.4	26 s	10.6 s	7.7 s	- Ρ
β ⁺ 1.5, 2.1	α 2.91	α 2.63		ε β ⁺ β ⁺ γ 334		β 1.9 β 0.7 IT 40 ε, β 1.5		γ 123, 1274 IT (9), e ⁻ 723, 1005	p 0.15, 025	β ⁻ 0.5, 2.4	β ⁻ 1.3, 1.4	β ⁻ 2.4, 3.4	β ⁻ 2.4	β- y 173				
γ 747, 634 633	γ 197, 121 678	γ 550, 630 611	ε γ 328, 277	γ 334 439 407 584	σ 4.0 + 3310 + 5920	e γ 842 γ 122 γ 90 963 344, e	σ 312, σ _{n.α} 1E-6	γ68 e,ε 101 σ1446	γ 87, 105 σ 3950	γ 812, 89 1231	γ 64, 411, 371 55, 619, e ⁻	γ 944, 977, 898 80, 1108, e⁻	γ 68, 79, 96 146, 665	2464 516, 413 1302 822	β⁻ γ 72 - 314	β⁻ γ 71, 165	ß-	
Sm 145	Sm 146	Sm 147	Sm 148	Sm 149	Sm 150	Sm 151	Sm 152	Sm 153	Sm 154	Sm 155	Sm 156	Sm 157	Sm 158	Sm 159	Sm 160	Sm 161		
340 d	6.8·10 ⁷ a	15.00	11.25	13.82	7.37	94.7 a	26.74	46.284 h	22.74	22.18 m	9.4 h	8.03 m	5.30 m	11.37 s	9.6 s	4.8 s	2.4 s	
8		1.07·10 ¹¹ a	7·10 ¹⁵ a			2-2-1												
 γ 61, (492)		α 2.248	s 1 022	σ 40140		β ⁻ 0.1 γ (22), e ⁻		β ⁻ 0.7, 0.8 γ 103, 70, e ⁻		β ⁻ 1.5, 1.6 γ 104, 246	β ⁻ 0.7 v 88, 204, 166	β ⁻ 2.6, 2.8 γ 198, 196, 394	β ⁻ 1.5, 1.9 γ 189, 364, 325	β ⁻ γ 190, 862, 254	0-	27000000	1	

σ8.5

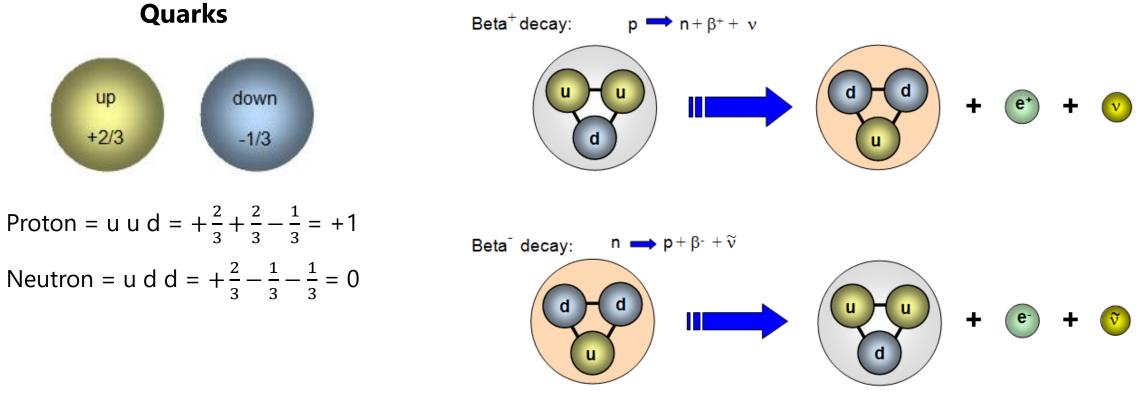
Stable
β⁻ decay
α decay
β⁺ decay

Neutron-deficient

σ 206

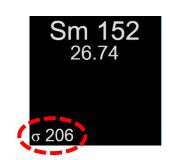
Acquired by particle accelerators

Proton-deficient


Acquired by thermal neutron flux in nuclear research reactors

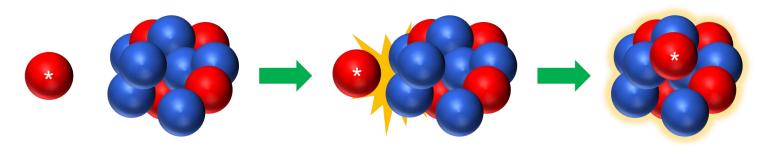
β decay

- β^- decay: proton (quarks: u, u, d) \rightarrow neutron (quarks: u, d, d)
- β^+ decay: neutron (quarks: u, d, d) \rightarrow proton (quarks: u, u, d)



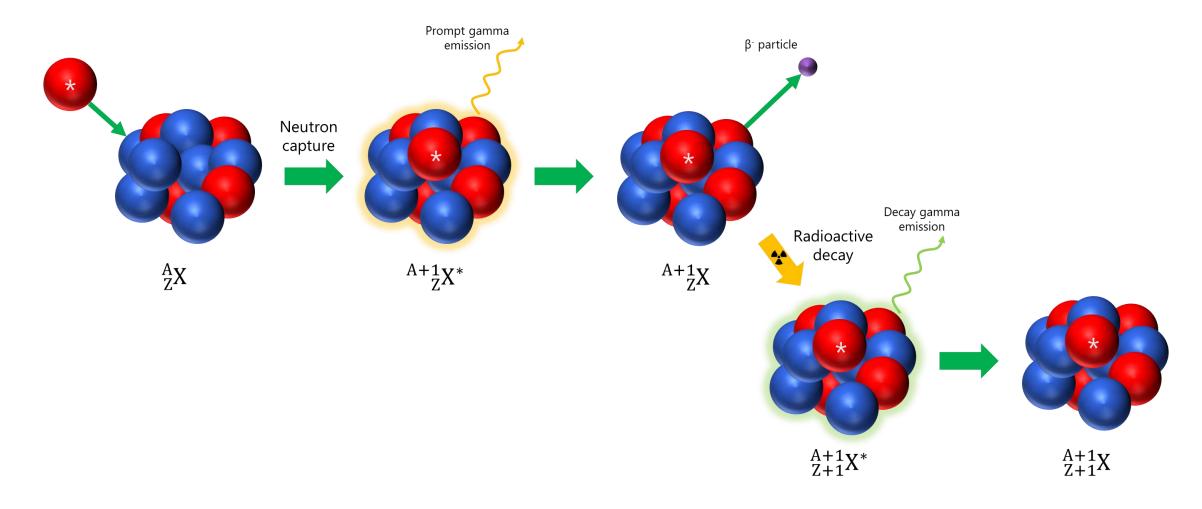
Neutron – nucleus interactions

- 3 main types
 - Elastic collisions = scattering (billiard ball interactions) → Moderation (slowing down neutrons)
 - Neutron absorption
 - Nuclear fission → Nuclear chain reaction (splitting of atoms)
 - Nuclear transmutation → Isotope production
- Nuclear cross section \rightarrow Describes probability of a nuclear reaction to occur \rightarrow characteristic area
 - \rightarrow Higher nuclear cross section => higher probability of interaction
 - \rightarrow Expressed in barn (10⁻²⁴ cm²)
- Thermal neutrons \rightarrow Larger probability of interaction
 - \rightarrow Larger effective neutron absorption cross-section
 - \rightarrow Can be absorbed more easily by an atomic nucleus
 - → Creates more heave isotope of the same chemical element (often unstable)



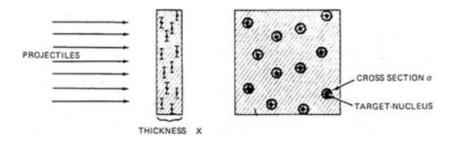
Neutron activation

Process where neutron radiation induces radioactivity in materials


- \rightarrow Atomic target nucleus captures free neutron, becoming heavier and entering excited state
- \rightarrow Immediately followed by gamma emission (photon) \rightarrow (n, γ) reaction
- \rightarrow Typically yields an unstable (i.e. radioactive) activation product
 - \rightarrow Emits particles to become stable again \rightarrow electrons (β -), ⁴He (α), neutrons, fission products
 - \rightarrow Half-lives range from fractions of a second till many thousands of years
- \rightarrow Production of neutron-rich isotopes

PRISMAP

Neutron activation

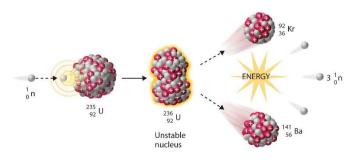


Neutron activation (simplified)

 $\mathbf{A} = \mathbf{A}_0 \cdot \mathbf{e}^{-\lambda \cdot \mathbf{t}}$

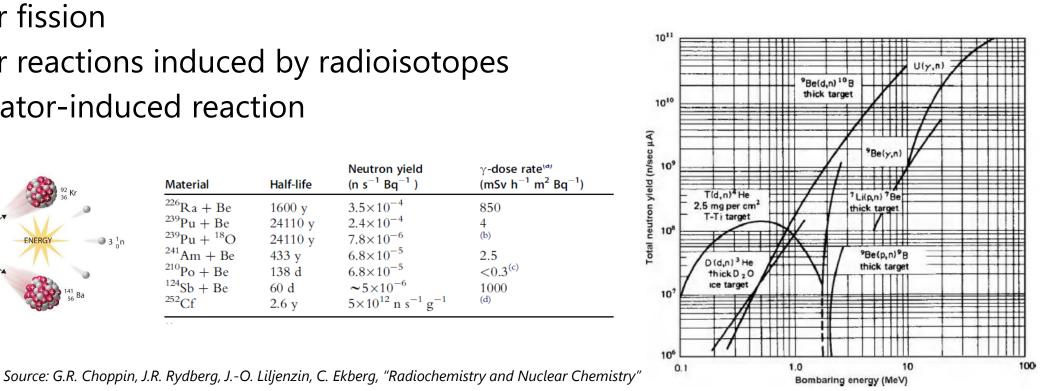
 $A = N_{target} \cdot \underline{X}_{target} \cdot \sigma_{target} \cdot \varphi_{reactor} \cdot \left(1 - e^{-\lambda_{isotope} \cdot t_{irradiaiton}}\right)$

- $A_{isotope} = activity of isotope (Bq = s^{-1})$
- N_{target} = number of particles in target
- Δ_{target} = isotopic and chemical purity of the target (enrichment)
- $\sigma_{th, target}$ = cross section of target for neutrons (barn = 10⁻²⁴ cm²)
- $\Phi_{reactor}$ = neutron flux (neutrons/cm²/s)
- $\lambda_{isotope}$ = radioactive decay constant of produced radionuclide (s⁻¹)
 - = $\ln(2) / t_{1/2, isotope}$
- t_{irradiation} = target irradiation time (s)



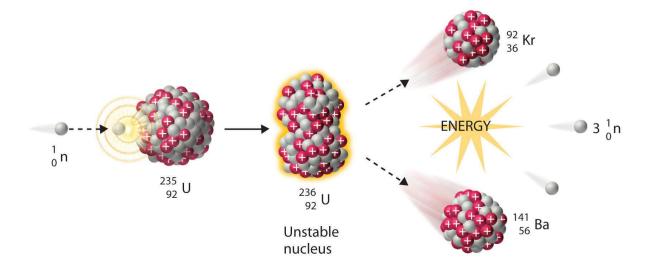
- Self-shielding in the target
- Flux variations
- Burn-up of the target material with time
- Subsequent neutron capture

Neutron source

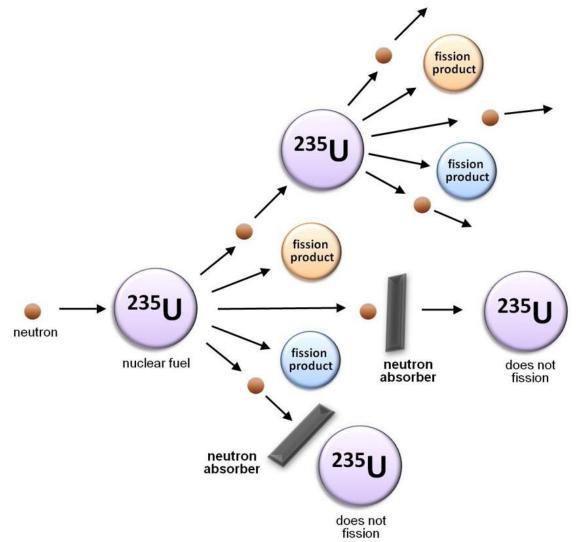

Production of neutron-rich radionuclides require neutrons

- \rightarrow Neutrons are bound to a nucleus, and do not exist free for long in nature
- \rightarrow Neutron source needed
 - \rightarrow Nuclear fission
 - \rightarrow Nuclear reactions induced by radioisotopes
 - \rightarrow Accelerator-induced reaction

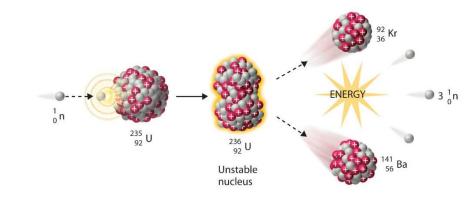
PRISMAP


Material	Half-life	Neutron yield (n s ⁻¹ Bq ⁻¹)	γ-dose rate ^(a) (mSv h ⁻¹ m ² Bq ⁻¹)
²²⁶ Ra + Be	1600 y	3.5×10^{-4}	850
²³⁹ Pu + Be	24110 y	2.4×10^{-4}	4
$^{239}Pu + {}^{18}O$	24110 y	7.8×10^{-6}	(b)
241 Am + Be	433 y	6.8×10^{-5}	2.5
210 Po + Be	138 d	6.8×10^{-5}	< 0.3 ^(c)
$^{124}Sb + Be$	60 d	$\sim 5 \times 10^{-6}$	1000
²⁵² Cf	2.6 y	$5 \times 10^{12} \text{ n s}^{-1} \text{ g}^{-1}$	(d)

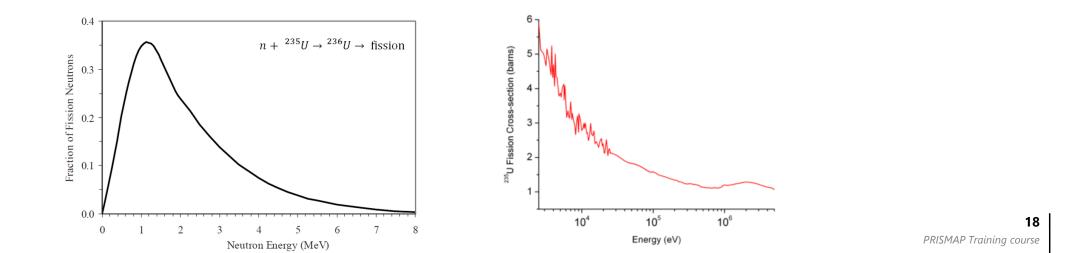
Neutron source – Fission

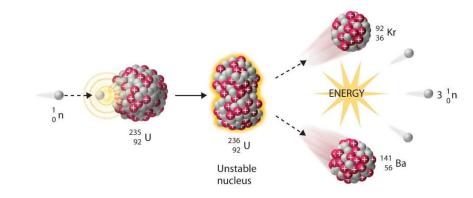

Nuclear fission $^{235}U(n,f)$ yields fission products + ±2.5 n⁰ + energy (ca. 200 MeV)

- \rightarrow Highly efficient neutron source
- \rightarrow Nuclear chain reaction \rightarrow needs to be controlled once critical
- \rightarrow Takes place in a nuclear reactor



Neutron source



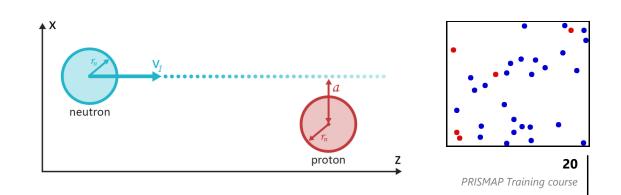

PRISMAP

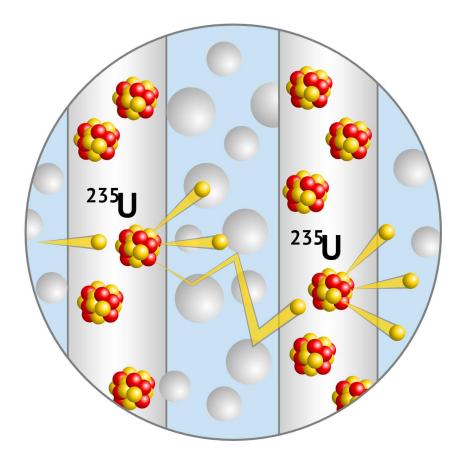
 235 U(n,f) \rightarrow Unstable 236 U nucleus 'explodes', ejecting fission products and neutrons at high kinetic energy and velocity

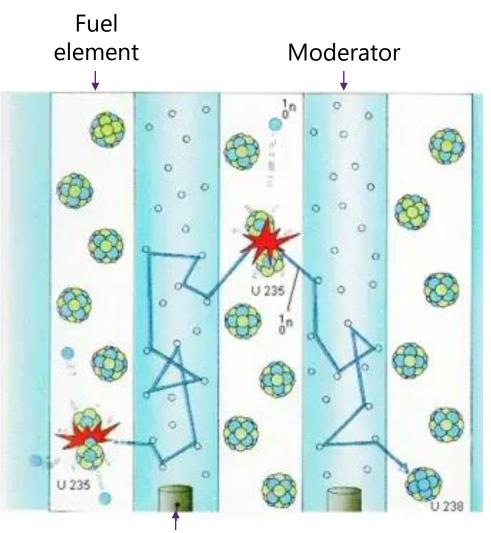
- → Release of neutrons from nucleus requires exceeding binding energy (7-9 MeV)
- \rightarrow 'Fast neutrons' 1-20 MeV, traveling ca 20,000 km/s
- \rightarrow Low probability of being captured by ²³⁵U atoms (or other target atoms)
- \rightarrow Not very suitable for maintaining fission reaction or radionuclide production

 235 U(n,f) \rightarrow Unstable 236 U nucleus 'explodes', ejecting fission products and neutrons at high kinetic energy and velocity

- → Release of neutrons from nucleus requires exceeding binding energy (7-9 MeV)
- \rightarrow 'Fast neutrons' 1-20 MeV, traveling ca 20,000 km/s
- \rightarrow Low probability of being captured by ²³⁵U atoms (or other target atoms)
- \rightarrow Not very suitable for maintaining fission reaction or radionuclide production

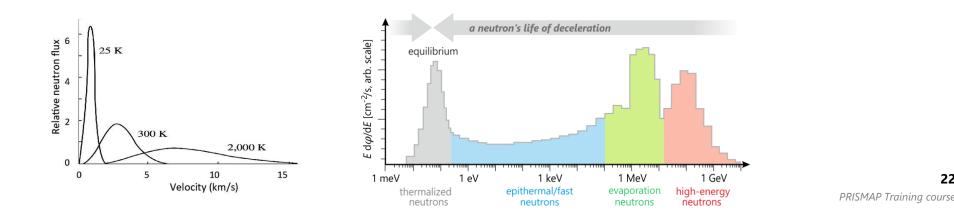

→ Neutrons must be slowed down <u>without</u> being captured


 \rightarrow Transfer of energy to a moderator



- Neutron moderation → Reduction of the initial high speed, i.e. high kinetic energy, of the free neutron
- Conservation of energy → reduction of energy = transfer of energy to another material, i.e. the moderador (= the medium)
- Performed by a large number of successive collisions with a material that scatters strongly, but absorbs weakly → High neutron scatter cross section
 - Energy is predominantly transfered by elastic collisions
 - Most efficient removal of $E_{k,n}$ by moderating nucleus with near-identical mass
 - ¹H is an almost perfect choice ($m_p \approx m_n$)
 - Maxwell-Boltzmann distribution of E_k
 - H₂O, D₂O, graphite, Be

PRISMAP



Control rod

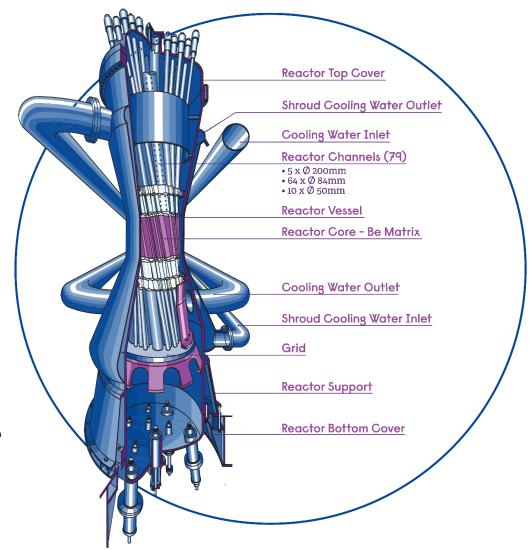
'Neutron temperature' \rightarrow indicates a free neutron's kinetic energy (eV)

- $\overline{E} = \frac{1}{2}m_n \langle v_n^2 \rangle = \frac{3}{2}k_B T$ m_n^n = the neutron mass v_n^2 = the average squared neutron speed k_{B} = Boltzmann constant (1.38E-23 J/K = 8.62E-5 eV/K)
- 1 MeV \rightarrow T \approx 7.7E9 K (thermodynamic temperature)
- Fast neutron: $1 20 \text{ MeV} \rightarrow 7.7 154 \text{ billion K} \rightarrow \text{'Hot neutrons'}$
- Neutron energy comparible to energy of surrounding particles \rightarrow 'Thermalized'
 - \rightarrow Thermal neutrons (\approx 0.025 eV, traveling at 2.2 km/s)
 - \rightarrow Energy corresponding to most probable speed at 300 K (H₂O medium in water tank)

22

- Developed and designed for material testing
 - Purpose = neutron flux irradiations and impact studies
 - Powerful high flux neutron source → 'Neutron factory'
 - Not for electricity production → All produced heat is evacuated by cooling water = by-product
- Allow for ease of access to neutrons
 - \rightarrow Access during operation
 - → Shielding compatible with installation of experimental devices
- Provide flexibility in utilization
 - $\rightarrow\,$ Configuration and operation parameters can be varied

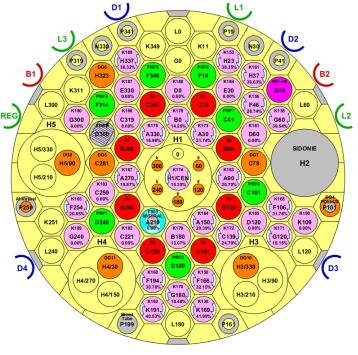
III. INTRODUCTION


A. PURPOSE OF PROJECT AND PHASE I

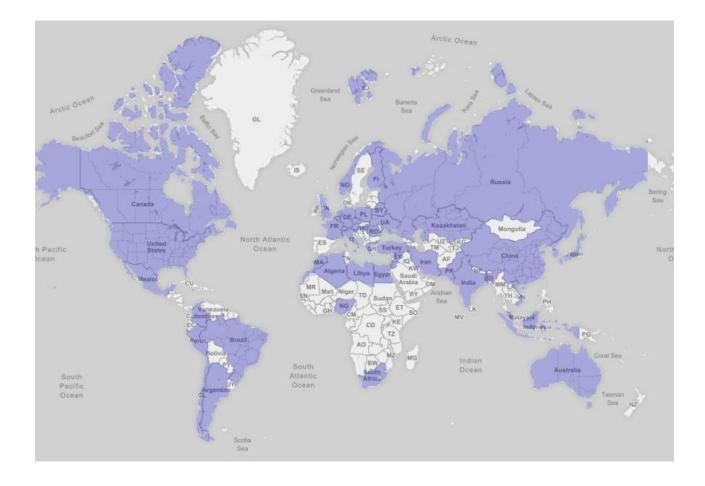
Under terms of a contract with the Centre d'Etudes pour les Applications de l'Energie Nucleaire (CEAN), the Nuclear Development Corporation of America (NDA) undertook the design of an engineering test reactor for Belgium. This reactor is intended to provide CEAN with a test facility of greatest overall usefulness in a future power reactor development program. Inasmuch as the present CEAN graphite reactor, BR I, already provides low neutron flux facilities, a basic objective of this program was to provide high flux test facilities of ready accessibility.

Flux results from power and size

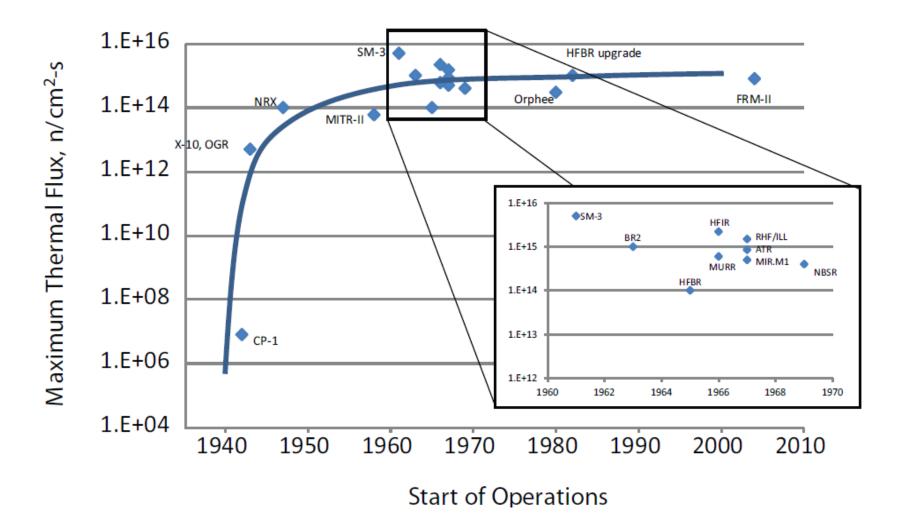
- Thermal spectrum most favorable
 - 1. Compact design
 - 2. Water cooling
 - 3. Metallic
- Pool type reactors allow for
 - Easy access
 - Shielding
 - Heat sink
- Large (= high power) reactors allow wider range of conditions
 - Flux ranges and reactivity variation
 - More flexible core configuration


Flux results from power and size

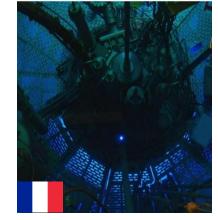
- Thermal spectrum most favorable
 - 1. Compact design
 - 2. Water cooling
 - 3. Metallic
- Pool type reactors allow for
 - Easy access
 - Shielding
 - Heat sink

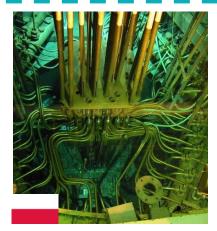

PRISMAP

- Large (= high power) reactors allow wider range of conditions
 - Flux ranges and reactivity variation
 - More flexible core configuration



Research reactors available




Research reactors (current capacity in EU)

 $\begin{array}{l} \textbf{BR2-SCK CEN} \\ \varphi_{th} \text{ up to } 4x10^{14} \text{ neutrons/cm}^2/\text{s (flexible)} \\ 1x10^{15} \text{ neutrons/cm}^2/\text{s (pressure vessel)} \end{array}$

 $\label{eq:harden} \begin{array}{l} \textbf{RHF-ILL} \\ \Phi_{th} \text{ up to } 1.5 \text{x} 10^{15} \text{ neutrons/cm}^2 \text{/s} \end{array}$

 $\label{eq:phi} \begin{array}{l} \textbf{MARIA} - \textbf{Polatom} \\ \Phi_{th} \text{ up to } 3x10^{14} \text{ neutrons/cm}^2\text{/s} \end{array}$

HFR - NRG ϕ_{th} up to 2.6x10¹⁴ neutrons/cm²/s

FRM II - TUM ϕ_{th} up to 1.3x10¹⁴ neutrons/cm²/s

27

Medical Radionuclides

LVR-15 – CICRR ϕ_{th} up to 1x10¹⁴ neutrons/cm²/s

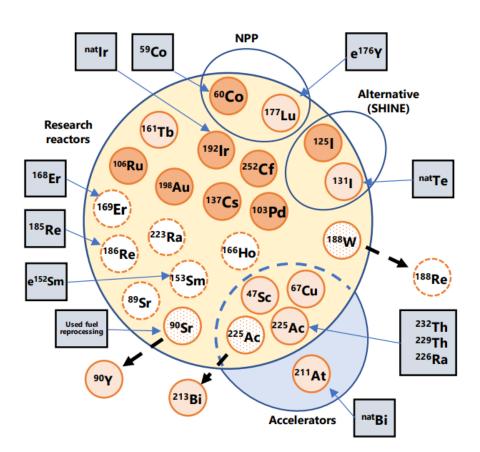
Research reactors (future capacity in EU)

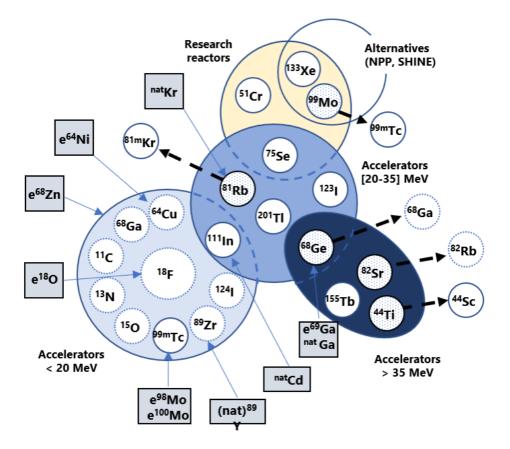
JHR – CEA Operational: ca. 2032

PALLAS - NRG Operational: ca. 2030

Potential difficulties

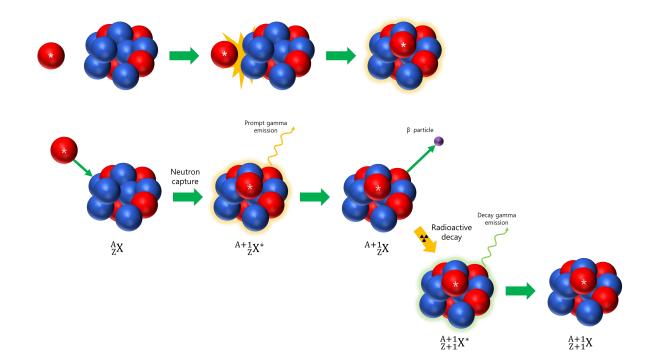
- Proliferation of fissile material \rightarrow Conversion to LEU (< 20% ²³⁵U enrichment)
- Ageing research reactor fleet \rightarrow Most reactors were constructed in 1960s
- Strong support by public subsidies
- Operation cycles altered with maintenance cycles
- Severe safety measurements
- Current research reactors were designed and optimized for material testing, not for medical radionuclide production
- Irradiation positions are limited, especially the very high flux ones
 - \rightarrow High demand = high competitions = increasing prices
 - → Find alternative high thermal neutron sources (e.g. CANDU commercial power reactors)

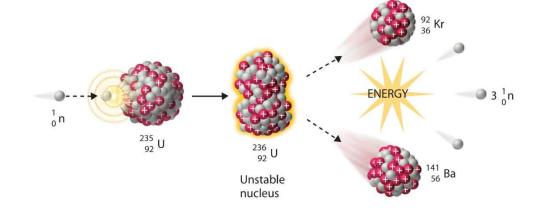



	Nuclear reactors	Cyclotrons
Principle of production	Target material inserted in the neutron flux field undergoes fission or neutron activation transmuting into radionuclide of interest	Target material irradiation by charged particle beams. Inlcuding nuclear reactions that transmute the material into radionuclide of interest
Transmutation base	Neutrons	p, d, t, ³ He, α or heavy ion beams
Advantages	 Production of neutron rich radionuclides, mostly for therapeutic use High production yield and production efficiency Centralized production: one research reactor able to supply to large regions, in some cases even globally 	 Production of proton rich elements used as β⁺ emitters for PET scans → diagnositc use Decentralized production allows for back-up chains High up-time High specific activity in most cases Small initial investment in comparison to nuclear reactor Lilltle long-lived radioactive waste
Disadvantages	 Extremely high initial investment cost High operational costs Considerable amounts of long-lived radioactive waste Long out-of-service periods Trouble to back-up in case of unforeseen downtime Demanding ligistics, often involving air transport Public safety concerns Non-proliferation treaty concerns → Conversion to LEU 	 Regional network of cyclotrons and complex logistics needed for short-lived produced radionuclides Radionuclide production limited depending on installed beam energy Lower production yield

Therapeutic radionuclides

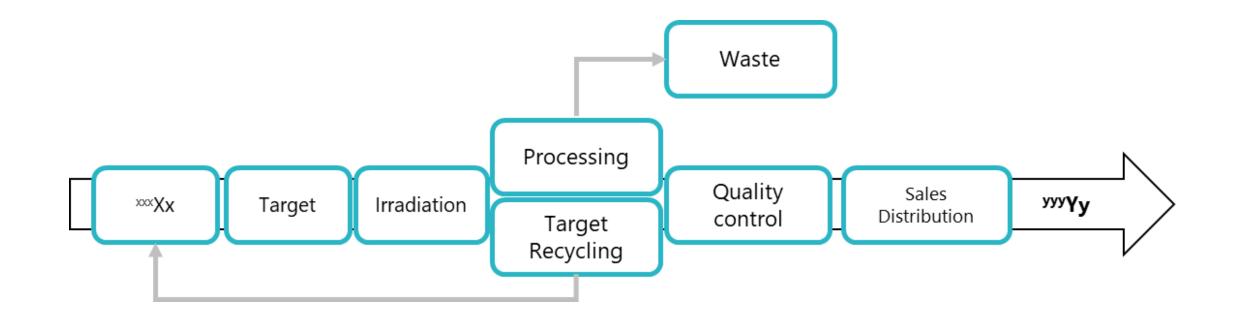
Diagnostic radionuclides




Sper

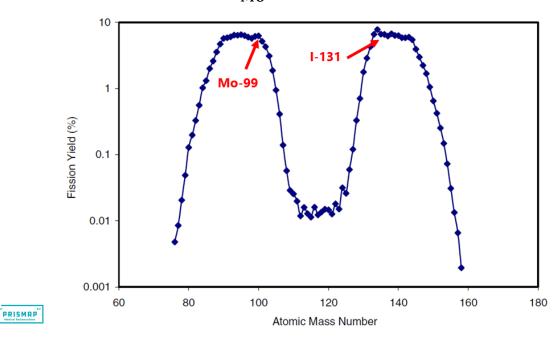
Reactor production of medical radionuclides

Production strategies


- 1. Fission ²³⁵U(n,f)
- 2. Neutron activation (n,γ) of highly enriched targets
 - Carrier added
 - Non-carrier added

Production strategies

Radionuclide	Half life	Application	Production method
⁹⁹ Mo/ ^{99m} Tc	66 h/6 h	SPECT	²³⁵ U fission ⁹⁸ Mo(n,γ) ⁹⁹ Mo
131	8 d		²³⁵ U fission ¹³⁰ Te(n,γ) ¹³¹ Te→ ¹³¹ I
⁵¹ Cr	28 d		⁵⁰ Cr(n,γ) ⁵¹ Cr
¹⁵³ Sm	46 h		¹⁵² Sm(n,γ) ¹⁵³ Sm
¹⁶¹ Tb	6.95 d	Dadianualida	$^{160}Gd(n,\gamma)^{161}Gd \rightarrow ^{161}Tb$
¹⁶⁶ Ho	27 h Radionuclide therapy		¹⁶⁵ Ho(n,γ) ¹⁶⁶ Ho ¹⁶⁴ Dy(2n,γ) ¹⁶⁶ Dy→ ¹⁶⁶ Ho
¹⁷⁷ Lu	6.65 d		¹⁷⁶ Lu(n,γ) ¹⁷⁷ Lu ¹⁷⁶ Yb(n,γ) ¹⁷⁷ Yb→ ¹⁷⁷ Lu
⁹⁰ Y	64 h		⁸⁹ Y(n,γ) ⁹⁰ Y
¹⁸⁸ W/ ¹⁸⁸ Re	69.8 d/17 h		¹⁸⁶ W(2n,γ) ¹⁸⁸ W→ ¹⁸⁸ Re
125	60 d	Prochuthoropy	124 Xe(n, γ) 125m Xe \rightarrow 125 I
¹⁹² lr	74 d	Brachytherapy	¹⁹¹ lr(n,γ) ¹⁹² lr

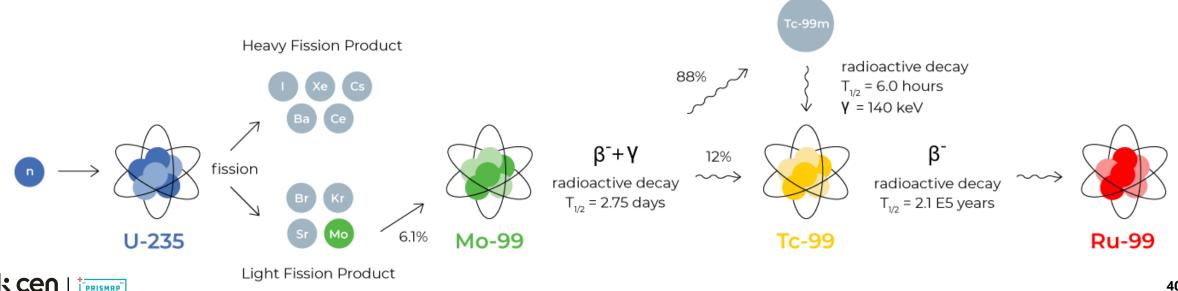

Production strategies – Fission

Fission ²³⁵U(n,f)

Research Centre

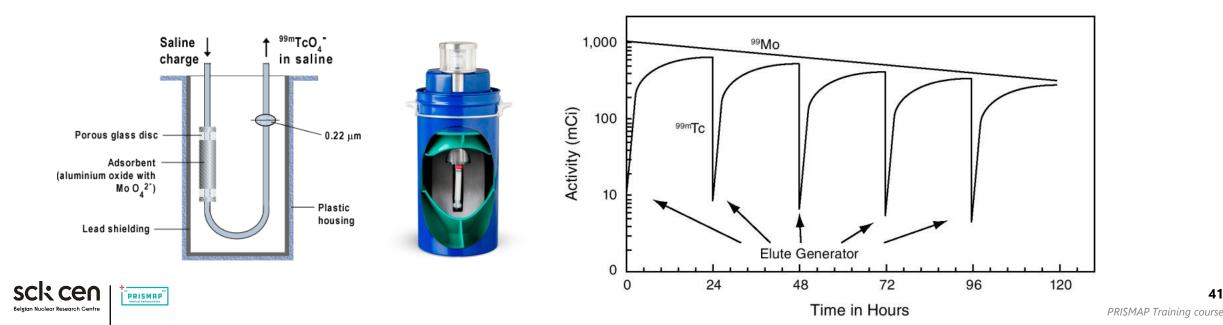
- $\rightarrow\,$ Produces wide range of fission products
- \rightarrow Predominant way for ⁹⁹Mo/^{99m}Tc production, ¹³¹I and ¹³³Xe are by-products
- \rightarrow Initially by use of HEU (90-95% $^{235}\text{U}),$ now by use of LEU (<20% $^{235}\text{U})$

 $\rightarrow N_{99_{Mo}} = \frac{\varphi \sigma_{235_{U_f}} \gamma_{99_{Mo}} N_{235_{U_0}}}{\lambda_{99_{Mo}}} \left[1 - e^{-\lambda_{99}_{Mo}t} \right] \quad (\gamma = fission \ production \ probability)$

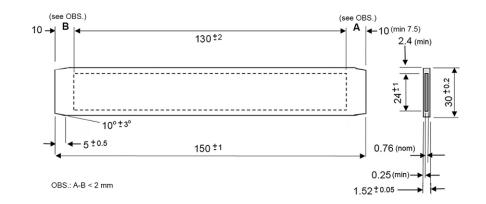

Reference Target	HEU (93%- ²³⁵ ∪)	LEU (19.8%- ²³⁵ U)
⁹⁹ Mo yield, Ci	530	540
Total U (²³⁵ U), g	16 (15)	94 (18)
²³⁹ P∪,µCi	30	720
^{234,235,238} U,μCi	1280	840
Totalα, μCi	1310	1560

PRISMAP Training course

- → Used for diagnosis in hospitals (SPECT imaging)
- \rightarrow ⁹⁹Mo yield accounts for 5-7% of fission products
- \rightarrow ⁹⁹Mo/^{99m}Tc generators, locally milked for ^{99m}Tc


esearch Centr

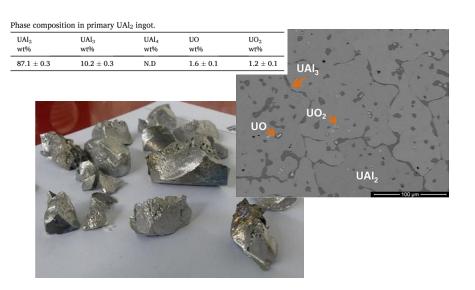
- \rightarrow Currently the working horse in nuclear medicine (80% ~ 40 million procedures)
- \rightarrow ⁹⁹Mo (t_{1/2} = 2.75 d), ^{99m}Tc (t_{1/2} = 6 h) \rightarrow Supply chain is race against time!


- \rightarrow Used for diagnosis in hospitals (SPECT imaging)
- \rightarrow ⁹⁹Mo yield accounts for 5-7% of fission products
- \rightarrow ⁹⁹Mo/^{99m}Tc generators, locally milked for ^{99m}Tc
- → Currently the working horse in nuclear medicine (80% ~ 40 million procedures)

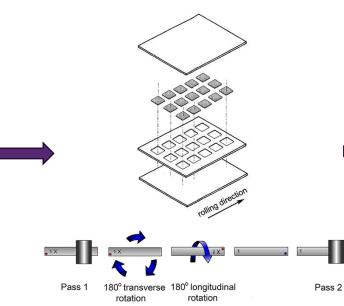
 \rightarrow ⁹⁹Mo (t_{1/2} = 2.75 d), ^{99m}Tc (t_{1/2} = 6 h) \rightarrow Supply chain is race against time!

41

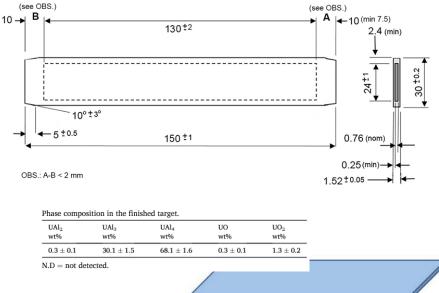
- 1. Target manufacuturing (LEU)
- 2. Production by ²³⁵U(n,f)
- 3. Chemical extraction

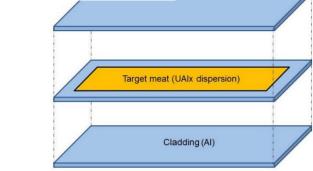

Target criteria

- **Properly sized** to fit into the irradiation position/canister
- Must contain a suffient amount of ²³⁵U to produce required amount of ⁹⁹Mo
- Good heat transfer properties to prevent over-heating during irradiation
- Provide a barrier to the release of radioactive products during and after irradation
- Target material must be **compatible with chemical processing steps** to recover and purify ⁹⁹Mo



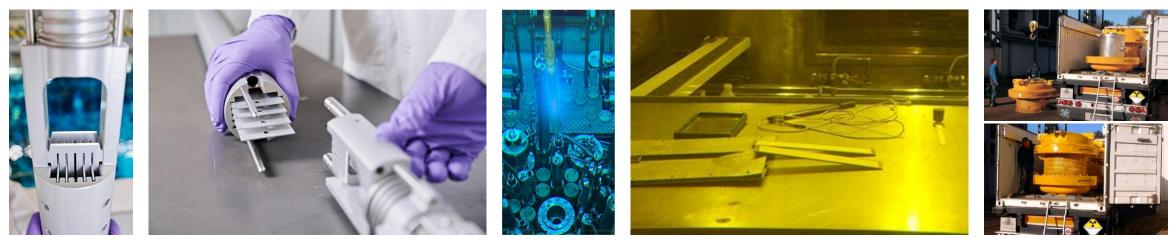
1. Target manufacuturing (LEU)


- 2. Production by ²³⁵U(n,f)
- 3. Chemical extraction



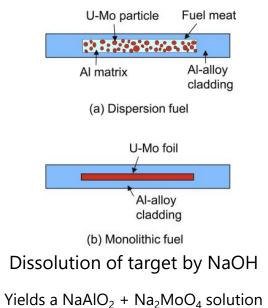
UAl₂ ingots after induction melting (87 wt% UAl₂)

Hot-rolling to convert UAl₂ into UAl₃ nad UAl₄ according to picture-frame technique

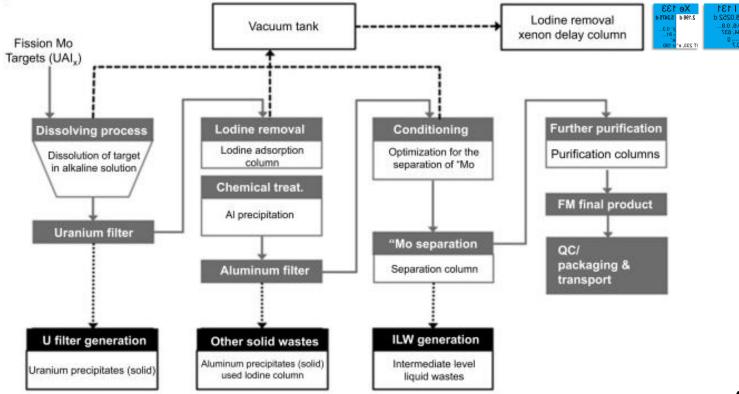

UAlx meat completely surrounded by aluminium (cladding), guaranteeing removal of heat + isolation from reactor environment (0 wt% UAl₂)

Source: M. Durazzo, Progress in Nuclear Energy 140 (2021) PRISMAP Training course

- 1. Target manufacuturing (LEU)
- 2. Production by ²³⁵U(n,f)
- 3. Chemical extraction

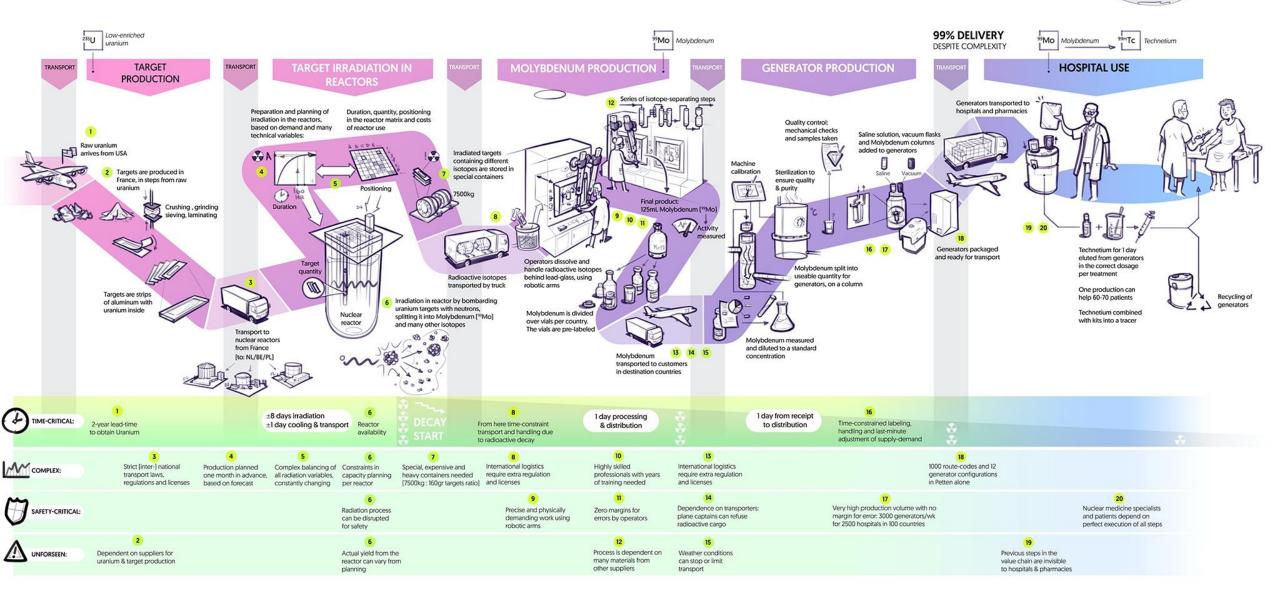


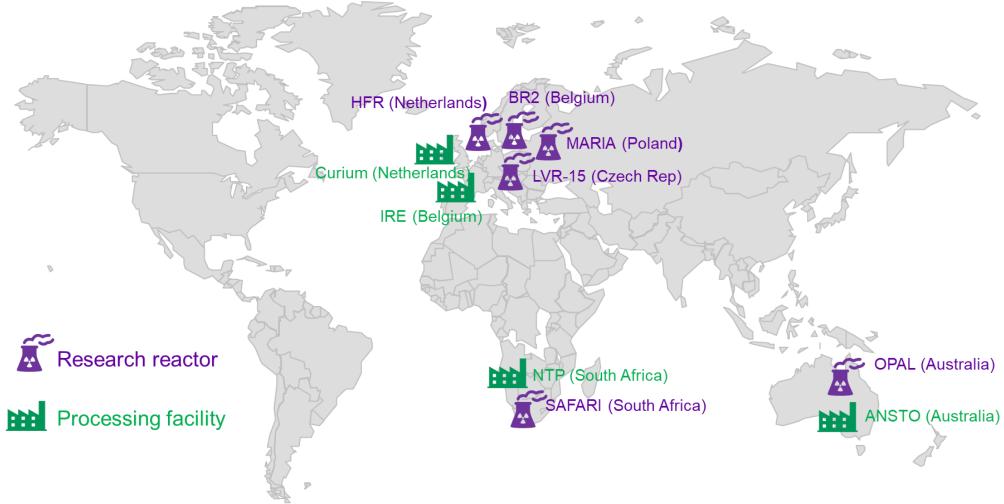
Video shared by the courtesy of CEA, kindly provided by Dr. M. Libessart <u>https://www.youtube.com/watch?v=eMWaVurRX78</u>


- 1. Target manufacuturing
- 2. Production by ²³⁵U(n,f)
- 3. Chemical extraction

and solid oxide/hydroxide residu (U and most fission products)

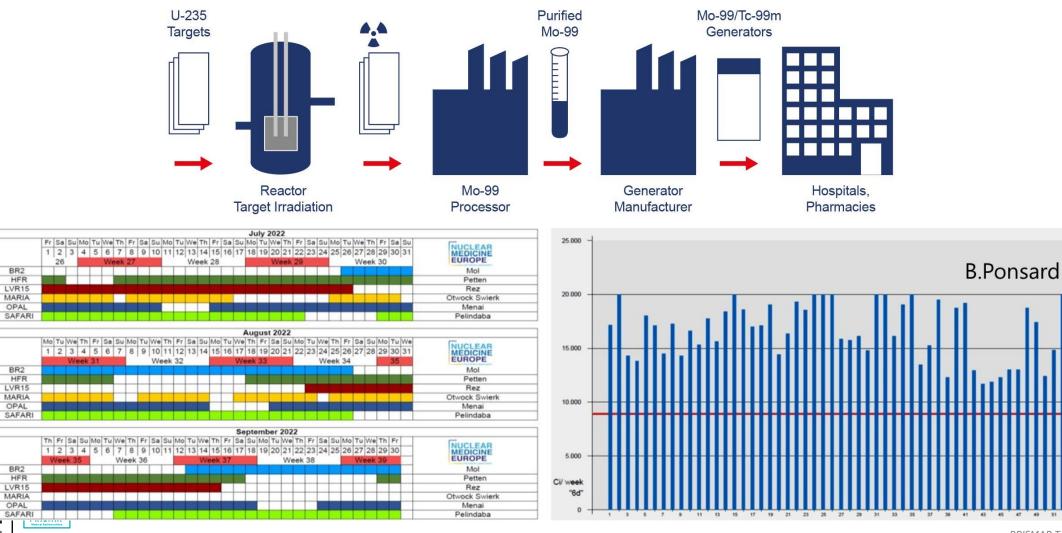
Source: S. Seung-Lee, Nuclear Engineering and Technology 48:3 (2016) PRISMAP Training course





COMPLEXITY OF GLOBAL MOLYBDENUM-99 SUPPLY CHAIN

From target production to generator delivery



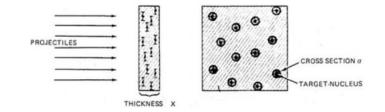
Mo-99/Tc-99m production – Security of supply

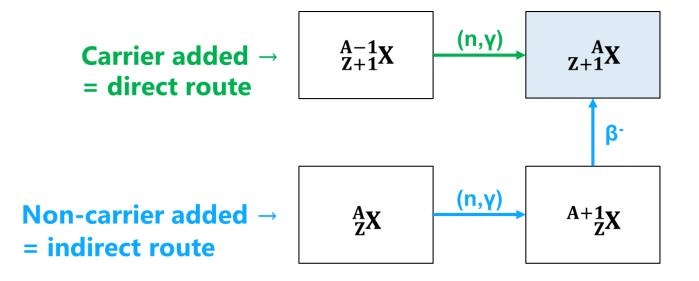
Belgian Nuclear Research Centre

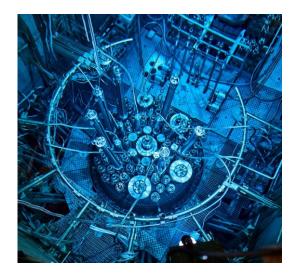
50

PRISMAP Training course

Reactor	Targets	Operating days/year	Mo-99 irradiation weeks/year	Irradiation capacity per week (6-day Ci Mo-99)	Irradiation capacity per year (6-day Ci Mo-99)	Estimated end of operation
BR2	LEU	203	29	8 600	249 400	2036
HFR	LEU	265	38	6 200	235 600	2030
LVR-15	LEU	210	30	3 000	90 000	2028
MARIA	LEU	200	36	2 200	79 200	2040
OPAL	LEU	308	44	3 200	140 800	2057
SAFARI-1	LEU	305	44	3 000	130 700	2030

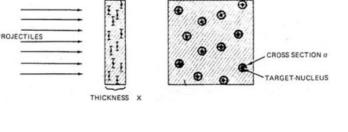

Processor	Targets	Mo -99 production weeks/year	Processing capacity per week (6-day Ci Mo-99)	Processing capacity per year (6-d Ci Mo-99)	Estimated end of operation
ANSTO	LEU	44	3 200	140 800	2057
CURIUM	LEU	52	5 000	260 000	Not Known
IRE	LEU	52	3 500	182 000	At least until 2032
NTP	LEU	44	3 000	130 700	At least until 2030

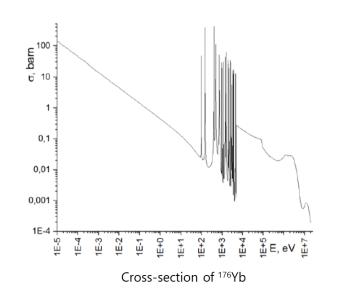



Production strategies – Neutron activation

Neutron activation $^{A}X(n,\gamma)^{A+1}X$

$$A = N_{target} \cdot \mathbf{\Delta}_{target} \cdot \sigma_{target} \cdot \mathbf{\phi}_{reactor} \cdot \left(1 - e^{-\lambda_{isotope} \cdot t_{irradiaiton}}\right)$$

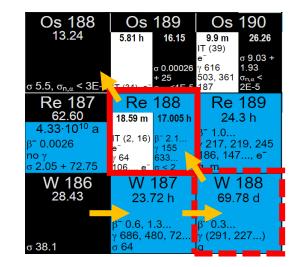

Production strategies – Neutron activation


Neutron activation ^AX(n,γ)^{A+1}X

$$A = N_{target} \cdot \mathbf{\Delta}_{target} \cdot \sigma_{target} \cdot \mathbf{\phi}_{reactor} \cdot \left(1 - e^{-\lambda_{isotope} \cdot t_{irradiaiton}}\right)$$

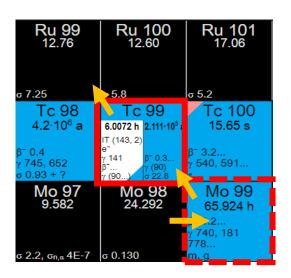
Main factors that determine the production yield of the radionuclide of intrest are:

- Energy of the neutrons and the neutron flux
- Characteristics of the target material (purity, enrichment, matrix, dimensions)
- Activation cross-section for the desired reaction


Radionuclide	Half life	Application	Production method
⁹⁹ Mo/ ^{99m} Tc	66 h/6 h	SPECT	²³⁵ U fission ⁹⁸ Mo(n,γ) ⁹⁹ Mo
¹³¹	8 d		²³⁵ U fission ¹³⁰ Te(n,γ) ¹³¹ Te→ ¹³¹ I
⁵¹ Cr	28 d		⁵⁰ Cr(n,γ) ⁵¹ Cr
¹⁵³ Sm	46 h		¹⁵² Sm(n,γ) ¹⁵³ Sm
¹⁶¹ Tb	6.95 d	Dadianualida	¹⁶⁰ Gd(n,γ) ¹⁶¹ Gd→ ¹⁶¹ Tb
¹⁶⁶ Ho	27 h	Radionuclide therapy	¹⁶⁵ Ho(n,γ) ¹⁶⁶ Ho ¹⁶⁴ Dy(2n,γ) ¹⁶⁶ Dy→ ¹⁶⁶ Ho
¹⁷⁷ Lu	6.65 d		¹⁷⁶ Lu(n,γ) ¹⁷⁷ Lu ¹⁷⁶ Yb(n,γ) ¹⁷⁷ Yb→ ¹⁷⁷ Lu
⁹⁰ Y	64 h		⁸⁹ Y(n,γ) ⁹⁰ Y
¹⁸⁸ W/ ¹⁸⁸ Re	69.8 d/17 h		¹⁸⁶ W(2n,γ) ¹⁸⁸ W→ ¹⁸⁸ Re
125	60 d	Prochuthoropy	¹²⁴ Xe(n,γ) ^{125m} Xe→ ¹²⁵ I
¹⁹² lr	74 d	Brachytherapy	¹⁹¹ lr(n,γ) ¹⁹² lr


Neutron activation – Examples

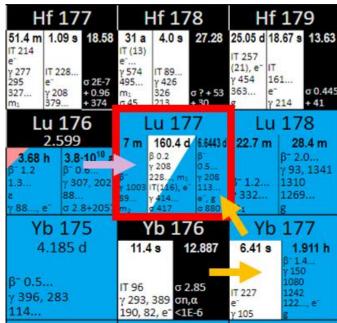
Н	f 17	7	ŀ	lf 17	78	Hf 179		
51.4 m	1.09 s	18.58	31 a	4.0 s	27.28	25.05 d	18.67 s	13.63
IT 214 e			IT (13) e ⁻			IT 257		1
	IT 228 e ⁻	σ 2E-7	γ 574 495	IT 89 γ 426		(21), e⁻ γ 454	161	-
	γ 208 379	+ 0.96	m1 0.45	326	σ?+53 + 30		e⁻ γ214	σ 0.445 + 41
	u 17			u 17	77		u 17	
		0				_		-
3.68	2.599	10 ¹⁰ a		160.4 c	1∕6.6443 d B⁻	22.7 n	n 28 β⁻2	8.4 m
3.00 r β⁻ 1.2	n 3.0 ° β⁻0			208	0.5		P	, 1341
1.3		7, 202		228 <mark>.</mark> m ₁ T(116), e		5-1.2		-
ε γ 88, e	88	8+2051		414	e ⁻ , g σ 880	332	1269 g	····
	b 17						b 17	
		-	_	′b 17		· · · ·		
4.185 d		11.4 s 12.887		6.41 \$		911 h		
							β⊤1. γ15	
			IT 96 σ 2.85			IT 227	1080	
γ 396,	283		γ 293, 389 σ η,α			e-	1242	
114			190, 8	2, e ⁻ <1	E-0	γ 105	g	


Er 166	Er ´	167	Er 168
33.503	2.269 s	22.869	26.978
σ 15.0 + 1.9	IT 208	σ 649	σ 2.74, σ _{n,α} 9E-5
_{σn,α} < 7E-5	e⁻	σn	
Ho 165	HO	166	Ho 167
¹⁰⁰	1132.6 a	26.824 h	_{3.1 h}
σ 3.5 + 60.9 σ _{n,α} < 2E-5	/ 184, 810	β [−] 1.8 1.9 γ 81 e [−]	0.3, 1.0 1347, 321 1. m
Dy 164 28.260	Dy 1.257 m IT_108, e⁻	165 2.334 h β⁻ 1.3	Dy 166 81.5 h
σ 1610 + 1040	p_ J.9 1.0 γ 515 σ 2000	γ 95 (362) e [−] σ 3600	β 0.4, 0.5 γ 82, (426) g

Dy 161 18.889	Dy 162 25.475	Dy 163 24.896
σ 600, σ _{n,α} < 3E-	a 194	σ 134, σ _{n,α} < 2E-5
Tb 160	Tb 161	Tb 162
72.3 d	6.89 d	7.76 m
β ⁻ 0.6, 1.7 γ 879, 299	β ⁻ 0.5, 0.6	^{3−} 1.4, 2.4
966 σ 570	γ 26, 49, 75 e ⁻	(260, 808 388
Gd 159	Gd 160	🕨 Gd 161
18.479 h	21.86	3.66 m
		6 1.6, 1.7
β ⁻ 1.0		γ 361, 315 102
γ 364, 58	σ 1.4	σ 19000

Eu 153	Eu	154
52.19	46.0 m	8.601 a
σ 312, σ _{n,α} 1Ε-	IT (9), e⁻ γ 68 √101	β⁻ 0.6, 1.8 γ 123, 1274 723, 1005 e⁻, ε σ 1446
Sm 152 26.74	Sm 46.2	153 284 h
σ 206	β [−] 0.7, 0 γ 103, 7 σ 420).8 ′0, e⁻

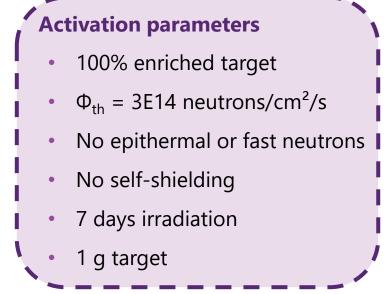
Production strategies – ¹⁷⁷Lu example


¹⁷⁶Lu(n, γ)¹⁷⁷Lu (σ_{th} = 2057 barn) but ¹⁷⁶Lu(n, γ)^{177m}Lu (σ_{th} = 2.8 barn) ¹⁷⁶Yb(n, γ)¹⁷⁷Lu (σ_{th} = 2.85 barn) ¹⁷⁶Yb(n, γ)¹⁷⁷Lu (σ_{th} = 2.85 barn) ¹⁷⁶Yb(n, γ)¹⁷⁷Lu (σ_{th} = 2.85 barn)

Tradeoff between

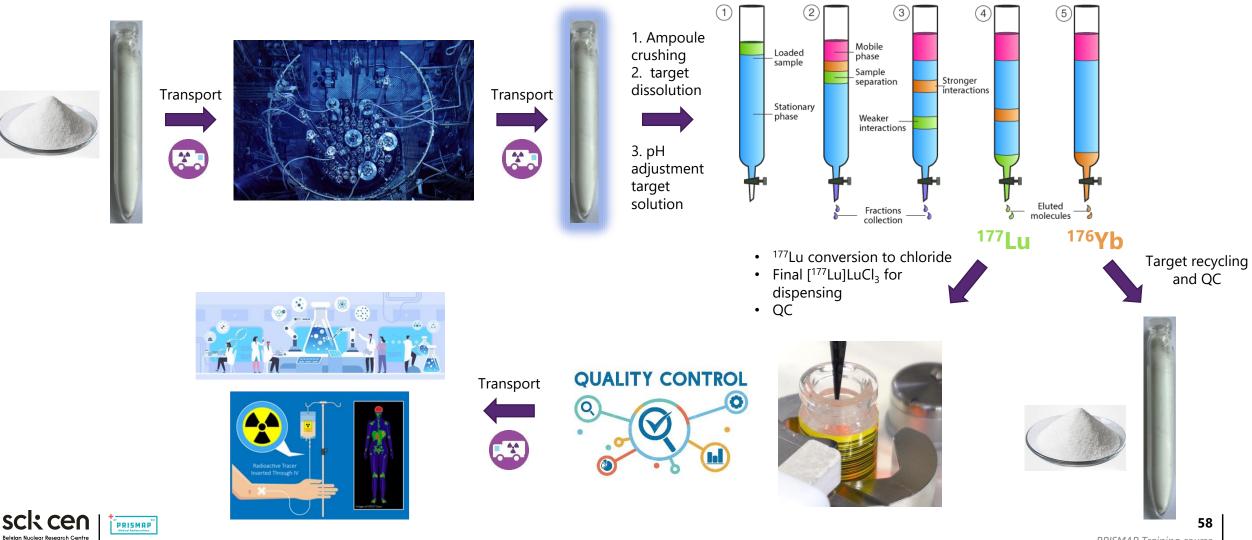
- Production yield
- Specific activity

PRISMAP


- Chemical and radionuclidic purity
- → Depends on available target material and final application

Production strategies – ¹⁷⁷Lu example

¹⁷⁶Lu(n, γ)¹⁷⁷Lu (σ_{th} = 2057 barn) but ¹⁷⁶Lu(n, γ)^{177m}Lu (σ_{th} = 2.8 barn) $A(^{177}Lu) = 1115 \text{ TBg at EOI}$ $A(^{177m}Lu) = 86 GBq at EOI$ \rightarrow SA(¹⁷⁷Lu) = 1115 GBq/mg $A(^{177}Lu) = 527 \text{ TBg at EOI}+7d$ _uMark® \rightarrow SA(¹⁷⁷Lu) = 527 GBq/mg $SA \ge 500 \text{ GBq/mg}$ at ART ¹⁷⁶Yb(n,γ)¹⁷⁷Lu (σ_{th} = 2.85 barn) $A(^{177}Lu) = 1.5 \text{ TBg at EOI}$ endoluci \rightarrow SA(¹⁷⁷Lu) = 4106 GBq/mg beta $SA \ge 3000 \text{ GBq/mg}$ at ART $A(^{177}Lu) = 0.8 \text{ TBg at EOI}+7d$ 1 g target \rightarrow SA(¹⁷⁷Lu) = 4106 GBq/mg



57

Production n.c.a. ¹⁷⁷Lu – **General approach**

Target manufacturing and irradiation

Radiochemica processing

Quality control

Target recovery and recycling

Waste management

Target preparation

Target criteria

- **Properly sized** to fit into the irradiation position/canister
- Sufficient amount to produce desired amount of activity
- Good heat transfer properties to prevent over-heating during irradiation
- Thermally stable compounds to prevent pressure build-up and target failure → typically metal or oxide compounds
- **Provide a barrier** to the release of radioactive products during and after irradation
- Target material must be compatible with chemical processing steps to recover and purify desired radioactive compoud

Target manufacturing and irradiation

Radiochemical processing

Quality control

Target recovery and recycling

Waste management

Target preparation

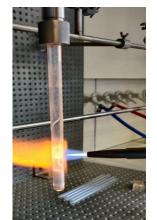
Target matrix should be suitable for neutron activation

→ Radiolanthanides: typically Ln₂O₃ target material sealed in a quartz glass ampoule (1 mm wall thickness) in cold welded aluminium irradiation can

Ln(NO ₃)·xH ₂ O		Ln ₂ O ₃	
More time-consuming target preparation	8	Simple target preparation	:
Easy to dissolve for chemical separation	٢	More challenging to dissolve	
Hygroscopic nature	$\overline{\otimes}$	Not hygroscopic	\odot
Low thermal stability, increased risk of ampoule failure	8	High thermal stability, enhancing target stability	:
Lower density = lower loading capacity	8	Higher density = higher loading capacity	:

Target manufacturing and irradiation

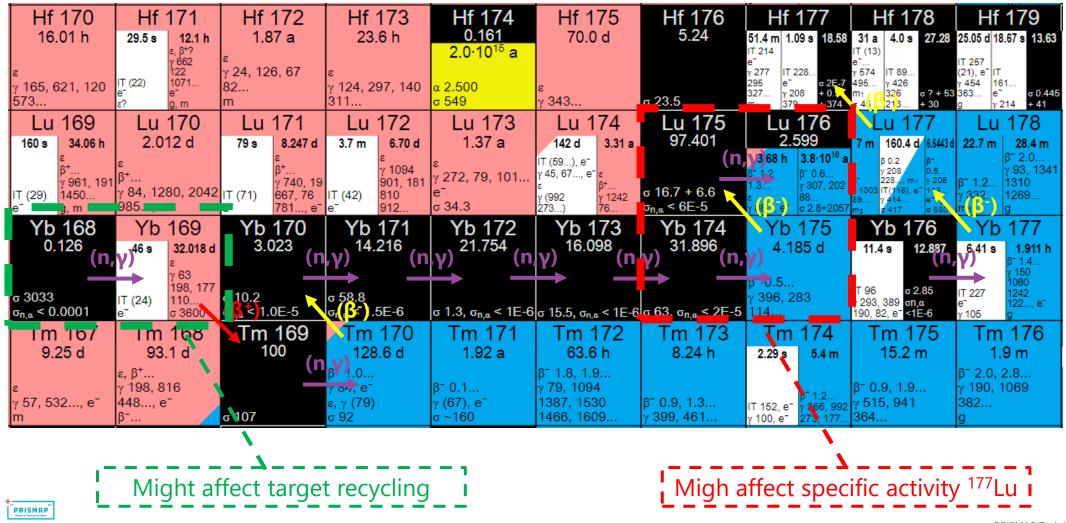
Radioc sino


Quality control

Target recovery and recycling

Target preparation

- Target matrix should be suitable for neutron activation
 - \rightarrow Radiolanthanides: typically Ln₂O₃ target material sealed in a quartz glass ampoule (1 mm wall thickness) in cold welded aluminium irradiation can
 - \rightarrow Metal compounds (e.g. ¹⁸⁶W rings, ¹⁷⁶Yb in SHINE process)
- Ampoule size limited to dimensions of aluminium irradiation can
 - \rightarrow Relatively uniform, but small variations between different research reactors



¹⁷⁷Lu production – Target quality

sck cen

Belgian Nuclear Research Centre

62

¹⁶¹Tb production – Target quality

873	γ 240, 136	IT e 138	87, 61, e	1484 946,e e	γ 166 310, 253	e 1272 962	IT 211, e ⁻ 78, e ⁻	283, 937 e	IT 298 no γ	e e	<u>σn,α <</u>
153	Dy 154	Dy 155	Dy 156	Dy 157	Dy 158	Dy 159	Dy 160	Dy 161	Dy 162	Dy 163	D
.4 h	3.0·10⁵ a	9.9 h	Ó.056	8.14 h	ó.095	144.4 d	2.329	18.889	25.475	24.896	
, 100		8									
	α 2.87		σ 33 σ _{n,α} < 0.009	ε, β+ γ 326	σ 43 σ _{n,α} < 0.006	ε γ 58, e⁻	σ 55	σ 600 σ - c 3E	c 10-)	σ 134, σ _{n,α} < 2E-5	σ 161
450								σ 600, $\sigma_{n,\alpha}$ < 3E-5			0 101
152	Tb 153	Tb 154	Tb 155	Tb 156	Tb 157	Tb 158	Tb 159	Tb 160	Tb 161	Tb 162	
17.5 h	2.34 d	22.7 h 9.994 h 21.5 h	5.32 d	5.3 h 24.4 h 5.35 d	71 a	10.70 s 180 a	¹⁰⁰ (n	72.3 d	6.89 d	7.76 m	
ε β* 3.0		ε γ 248 ε		IT 88		ε γ 944	(β 0.6, 1.7	_		
γ 344, 271	ε, β ⁺	347 γ 123 ε 1420 248 β' 123 540 γ 123	8	e",g ε ε γ 534	_	962		γ 879, 299 955	β ⁻ 0.5, 0.6	β ⁻ 1.4, 2.4	β ⁻ 0.8
586 α?	γ 212, 110, 102 170, 83	1420 248 β' 123 540 γ 123 IT IT 1274	γ 87, 105, 180 262	β' IT 199 β? γ50 1222	ε γ (54), e⁻	IT (110) 80, e ⁻	σ 23.8		γ 26, 49, 75 🚬	γ 260, 808 888	γ 351. 494
					1.1.11				Cd 160		- C
151	Gd 152 0.20	Gd 153	Gd 154	Gd 155	Gd 156	Gd 157	Gd 158	Gd 159	Gd 160	∖Gd 161	G
20 d	1.08·10 ¹⁴ (n	240.4 d	^{2.18} (n	ν) ^{14.80} (n	,γ) ^{20.47} (n,	v) ^{15.65} (n.	v) ^{24.84} (n	18.479 h	^{21.86} (n	3.66 m	
	1.00.10 411		((β 1.6, 1.7	
43	α 2.147, σ 755	φ 97, 103, 70 σ 22460		σ 60330		σ 254000		β ⁻ 1.0		7 502 , 315 102	6- 1.0
	σ _{n,α} 0.007	σ _{n,α} 0.033					σ 2.22		σ1.4	σ 19000	γ 442
150	Eu 151	Eu 152	Eu 153	Eu 154	Eu 155	NEu 156	Eu 157	Eu 158	Eu 159	Eu 160	F
36.9 a	47.81	96 m 9.312 h 13.517	52.19	_46,0 m 8.601 a	4.753 a	15.19 d	15.18 h	45.9 m	18.1 m	30.8 s 42.6 s	
ε ε		ε, β'	(n	γ) β 0.6, (la.	γ) ^{~,,,} , (n,	γ) 15.15 α	15.10 11	45.5 11	10.1 11	β- 2.4	
β+		β 1.9 β 0.7 IT 40 ε, β 1.5		γ 123 <u>, 1274</u>	0 0.15, 025	p 0.5, 2.4	- 1.3, 1.4	β ⁻ 2.4, 3.4	β ⁻ 2.4	3.4	
γ 334 439	σ 4.0 + 3310 +	e γ842 γ122 γ90963344		IT (9), e 723, 1005 γ 68 e .ε	γ 87, 105	γ 812, 89	64, 411, 371	γ 944, 977, 898	γ 68, 79, 96	β ⁻ γ 173 2464 516, 413	β-
584	5920	g 0 1.8E4 0 1.3E4	σ 312, σ _{n,α} 1E-6	101 o 1446	σ 3950	1231	55, 619, e⁻	80, 1108, e⁻	146, 665	1302 822	γ72 -
149	Sm 150	Sm 151	Sm 152	5m 153	Sm 154	sm 155	Sm 156	Sm 157	Sm 158	Sm 159	S
3.82	7.37	94.7 a	26.74	46.284 h	22.74	22.18 m	9.4 h	8.03 m	5.30 m	11.37 s	

Might create long-lived waste

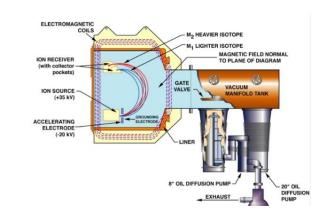
¹⁶¹Tb production – Target quality

873	ү 240, 136	IT e 138	87, 61, e	1484 946,e e	γ 166 310, 253	e 1272 962	IT 211, e ⁻ 78, e ⁻	Ž83, 937 e	IT 298 no γ	e e	σ _{n,α} <
153	Dy 154	Dy 155	Dy 156	Dy 157	Dy 158	Dy 159	Dy 160	Dy 161	Dy 162	Dy 163	D
.4 h	3.0·10⁵ a	9.9 h	0.056	8.14 h	Ó.095	144.4 d	2.329	18.889	25.475	24.896	
,											
, 100		ε β ⁺ 0.9, 1.1	σ 33	- 8+	σ43	_					
	α 2.87		σ _{n,α} < 0.009		σ _{n,α} < 0.006	ε γ 58, e⁻	σ 55	σ 600, σ _{n,α} < 3E-5	σ 194	σ 134, σ _{n,α} < 2E-5	σ 161
152	Tb 153	Tb 154	Tb 155	Tb 156	Tb 157	Tb 158	Tb 159	Tb 160	Tb 161	Tb 162	T
17.5 h	2.34 d	22.7 h 9.994 h 21.5 h	5.32 d	5.3 h 24.4 h 5.35 d		10.70 s 180 a 🗸	100	72.3 d	6.89 d	7.76 m	
΄ β† 3.0		ε γ 248 ε		IT 88		8		β- 0.6, 1.7			
γ 344, 271	ε, β+	347 y 123 ε	г з	e',g ε ε γ 534		γ 944 962		γ 879, 299	β [−] 0.5, 0.6	β ⁻ 1.4, 2.4	β ⁻ 0.8
586 α?	γ 212, 110, 102 170, 83	123 540 y 123	γ 87, 105, 180 262	β' IT 199 β'? γ 50 1222	ε γ (54), e⁻	IT (110) 80, e ⁻	σ 23.8	966 σ 570	γ 26, 49, 75 e ⁻	γ 260, 808 888	γ 351, 494
151	Gd 152	Gd 153	Gd 154	Gd 155	Gd 156	Gd 157	Gd 158	Gd 159	Gd 160	Gd 161	6
20 d	0.20	240.4 d	2.18	14.80	20.47	15.65	24.84	18.479 h	21.86	3.66 m	
20 a	1.08·10 ¹⁴ a	240.4 0	2.10	14.00	20.47	13.03	24.04	18.479.0	21.00	β ⁻ 1.6, 1.7	
		γ 97, 103, 70			_					γ 361, 315	
43	α 2.147, σ 755	σ 22460		σ 60330		σ 254000		β- 1.0		102	β ⁻ 1.0
	σ _{n,α} 0.007	σ _{n,α} 0.033	<u>σ 85</u>	J _{n,α} 8E-5	1.8	i <u>n,α</u> 0.00055	<mark>.</mark> 2.22	γ 364, 58	σ1.4	σ 19000	γ 442
150	Eu 151	Eu 152	Eu 153	Eu 154	Eu 155	Eu 156	Eu 157	Eu 158	Eu 159	Eu 160	E
36.9 a	47.81	96 m 9.312 h 13.517	52.19	46.0 m 8.601 a	4.753 a	15.19 d	15.18 h	45.9 m	18.1 m	30.8 s 42.6 s	
ε β*		β=1.9β=0.7		β 0.6, 1.8 y 123, 1274						β ⁻ 2.4 3.4	
γ 334	σ 4.0 + 3310 +	IT 40 ε, β/ 1.5 e' γ 842 γ 122		IT (9), e 723, 1005	β ⁻ 0.15, 025	β [−] 0.5, 2.4	⁻ 1.3, 1.4	2.4, 3.4	β ⁻ 2.4	β 7 173	8-
1000	5920	γ 90 963 344, e	σ 312, σ _{n,α} 1E-6	γ68 <mark>e</mark> ',ε 101 σ1446	γ 87, 105 σ 3950	γ 812, 89 1231	764, 411, 371 55, 619, e⁻	γ 944, 977, 898 80, 1108, e⁻	γ 68, 79, 96 146, 665	2464 516, 413 1302 822	γ72 -
149	Sm 150	Sm 151	Sm 152	5m 153	5m 154	5m 155	Sm 156	Sm 157	Sm 158	Sm 159	Í SI
3.82	7.37	94.7 a	26.74	46.284 h	22.74	22.18 m	9.4 h	8.03 m	5.30 m	11.37 s	
		5477 d		40.20411		22.10 m	5.4.11	0.00 11	0.00 m	11.57 5	

Might create long-lived waste Might reduce production yield

Fraining course


Stable isotope enrichment


- High radionuclidic purity and specific activity required
 - $\rightarrow\,$ (Highly) enriched isotopes needed
- Enrichment techniques

PRISMAP

Research Centre

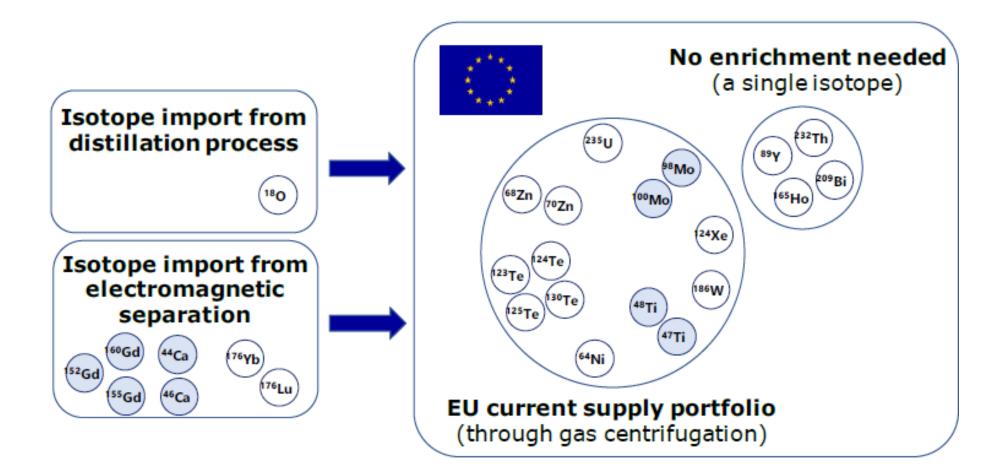
- Distillation only works effectifiely when large relative mass differences between different isotopes of an element → light isotopes
- Gaseous centrifugation only works when gaseous compound of the element exists. Most cost-efficient for enrichment of elements too heavy for distillation
- **Electromagnetic isotope separator (EMIS)** magnetic and electronic forces separate charged isotopic species. More costly to operate and smaller production quantities

Stable isotope enrichment

н																	He
Li	Be										·	в	С	N	0	F	Ne
Na	Mg											AI	Si	Ρ	S	СІ	Ar
к	Са	Sc	Tí	v	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cq	In	Sn	Sb	Те	I	Xe
Cs	Ва	*	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ТІ	Pb	Bi	Ро	At	Rn
Fr	Ra	**															
* Lanthanides			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb	Lu
** Actinides			Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Υ

photochemical method


Cu Enrichment by electromagnetic method

Enrichment by centrifugation

No enrichment possible, only a single isotope in natural product

Stable isotope enrichment

Target manufacturing and irradiation

Radiochemical processing

Quality control

Target recovery and recycling

Waste managemen

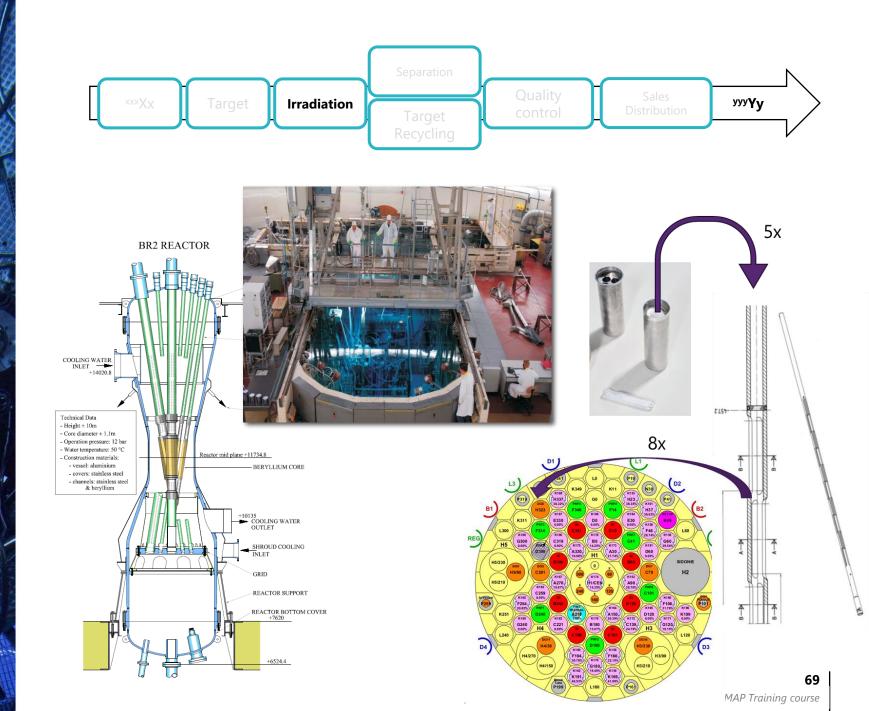
Target material scarcity

Scarcity of highly enriched target material

- High enrichment factor and high chemical purity needed
- Very high dependency on Russian calutrons (WWII era technology)
 - → Can separate almost every stable isotope, but costly to operate and relatively small quantities only
 - \rightarrow Market dominated by Russia
 - → Situation is slowly changing but new initiatives are expensive and time-consuming
 - \rightarrow Most initiatives focused on ^{176}Yb supply for ^{177}Lu production

Neutron activation

Target manufacturing and irradiation


1 4918

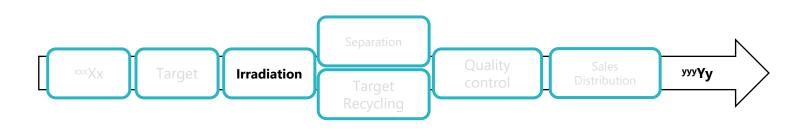
Radiochemical processing

Quality control

Target recovery and recycling

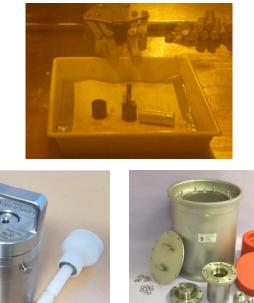
Waste mana

Neutron activation

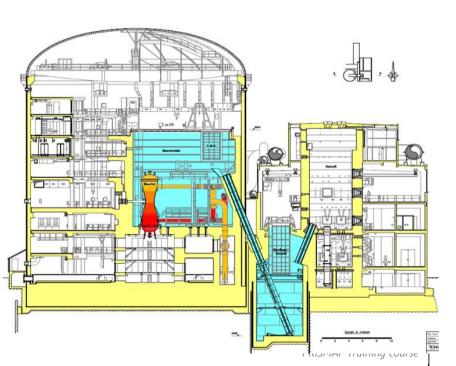

Target manufacturing and irradiation

Radiochemical processing

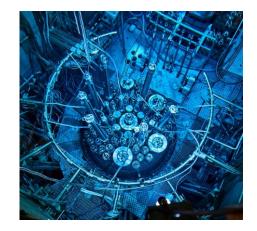
Quality control


Target recovery and recycling

Waste mana


Transfer of irradiated targets to hotcell for decanning

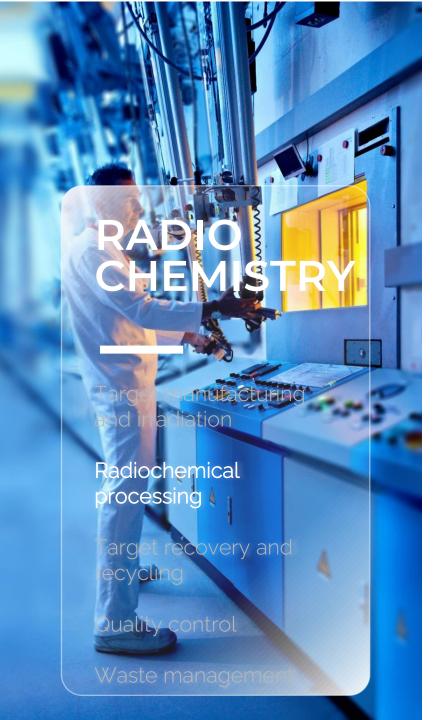
- \rightarrow Cooling of irradiated targets \rightarrow decay of short-lived radio-contaminants
- \rightarrow Opening of aluminium irradiation can
- $\rightarrow\,$ Preparation for shipment in dedicated transport containers

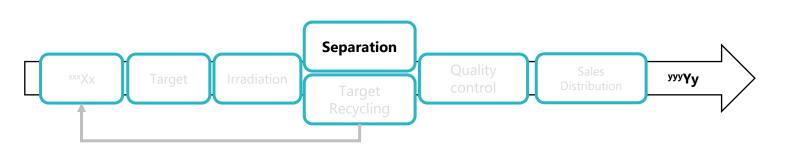


Type A (\leq 700 GBq ¹⁷⁷Lu)

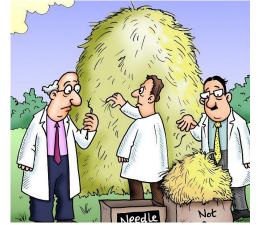
Type B (>700 GBq ¹⁷⁷Lu)

Transport of activated target material



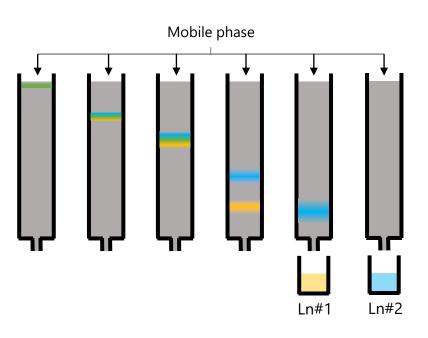


Radiochemical processing facility

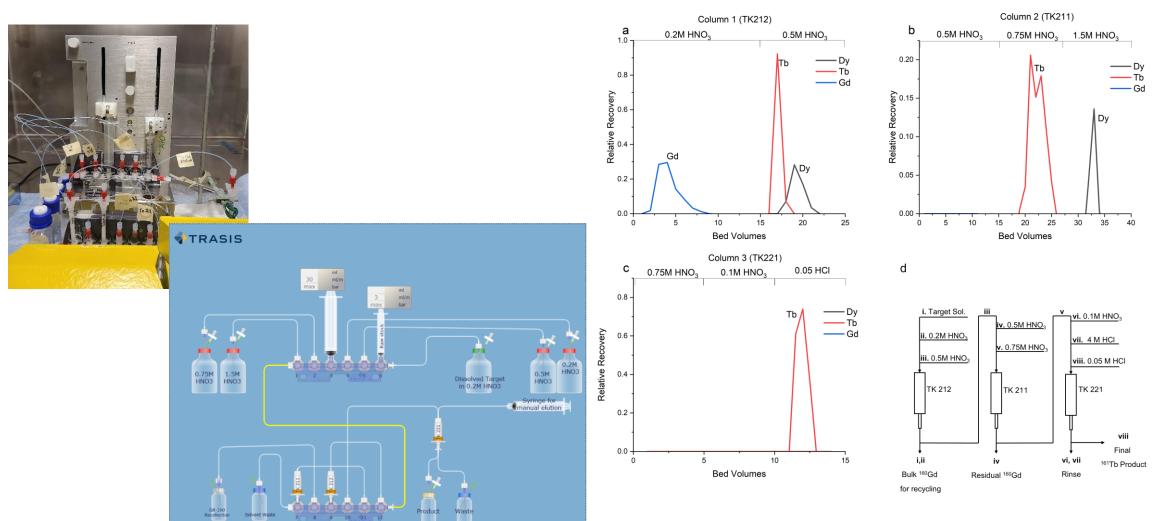

Reactor

- Isolate radionuclide from target matrix
- Develop efficient separation methods, guaranteeing
 - High quality end-product
 - High target recovery and regeneration
 - Appropriate waste management
- Easy scale-up and cost-efficient
 - MBq scale \rightarrow GBq scale
 - GBq scale \rightarrow TBq scale
 - Simple, robust and fast
 - Automated and remote-controlled
 - Insensitive to target contaminants
 - GMP compliant

Lu:Yb ratio 1:10⁴-10⁶ 72 PRISMAP Training course


Lanthanides – Separation strategies

Small difference in affinity for coordinating ligands


- Extraction chromatography
 - Extractant physically impregnated onto solid support
 - Heavier lanthanide binds stronger to extractant
 - Lighter lanthanide elutes first
- Strong cation exchange

PRISMAP

- Functional groups resin (usually SO₃⁻)
- Chelating ligand in mobile phase
- Heavier lanthanide binds stronger to chelating ligand
- Heavier lanthanide elutes first
- \Rightarrow Obtain high-purity fractions
- \Rightarrow Separate micro amounts for macro amounts

Extraction chromatography method

S. McNeil et al., EJNMMI Radiopharm. and Chem., 2022

74

Strong cation exchange method

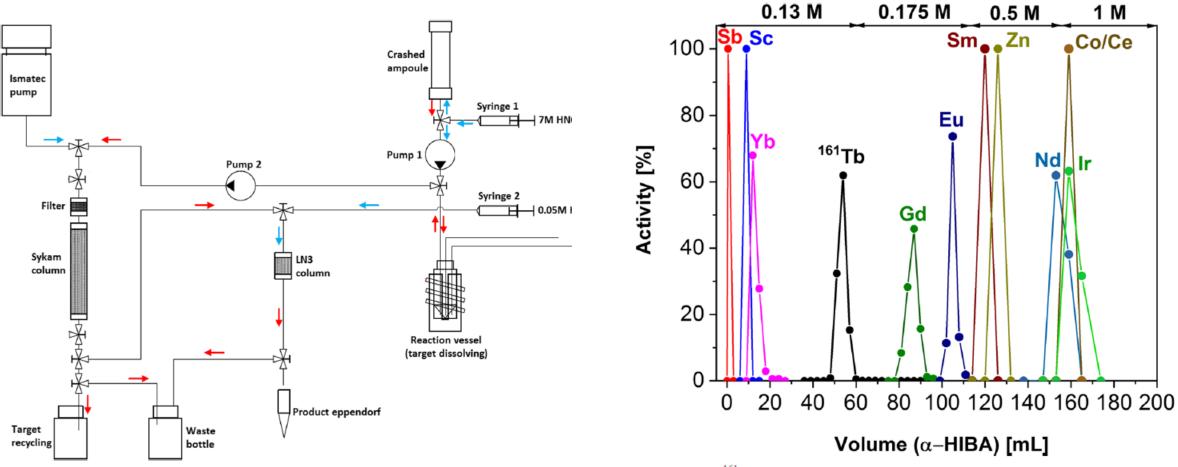
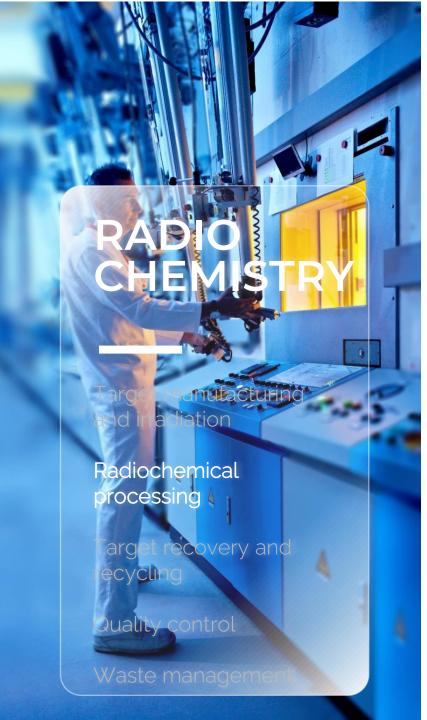
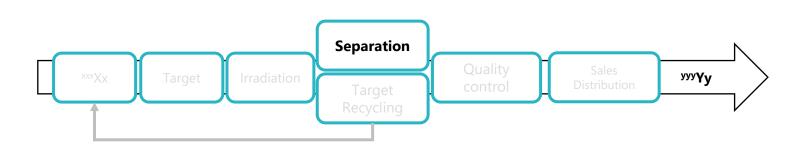
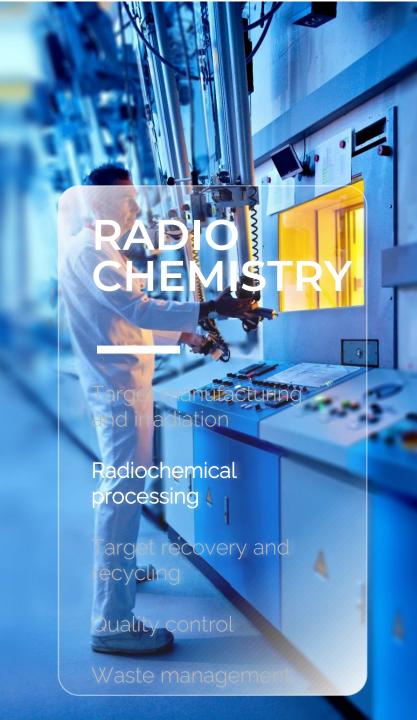
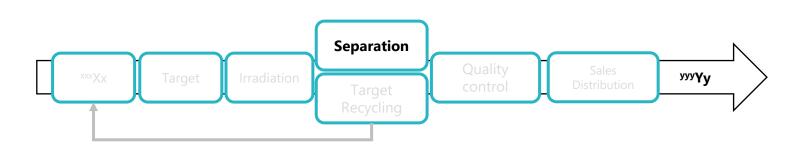




Fig. 2 Schematic diagram of the ¹⁶¹Tb chemical separation system

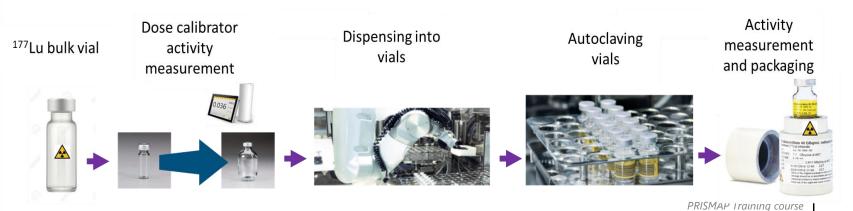
Fig. 1 Elution profile of ¹⁶¹Tb separation from the irradiated target material and side products (10 mm \times 170 mm Sykam resin column, 8 mg ¹⁶⁰Gd₂O₃, 0.6 mL/min eluent flow rate)





Production environment – typically hot cells in a clean room facility

- Lead shielded hot cells
- Processes (fully) automated
- Hot cells equipped with telemanipulators for remote handling

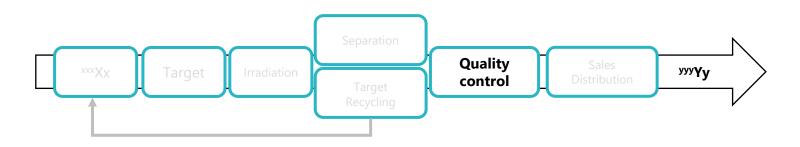


Production environment – typically hot cells in a clean room facility

- Lead shielded hot cells
- Processes (fully) automated
- Hot cells equipped with telemanipulators for remote handling
- Dispensing and sterilization
- Packaging

Quality control

ing


Radiochemica

processing

Quality control

Target recovery and recycling

Waste management

- High quality product Tested according to Eur. Phar. guidelines
- Needed to guarantee product quality for medical use
 - Radionuclidic purity (gamma spectrometry)
 - Chemical purity (ICP-MS/ICP-OES)
 - Radiochemical purity (radio-TLC)
 - Activity concentration (dose calibrator)
 - Specific activity (dose calibrator + ICP-MS/ICP-OES)
 - Radiolabeling (apparent molar activity) (radio-TLC)
 - Biocompatible (endotoxin + sterility)
- Certificate of analysis

Quality control

t manufacturing radiation

Radiochemio processing

Quality control

Target recovery an recycling

Waste management

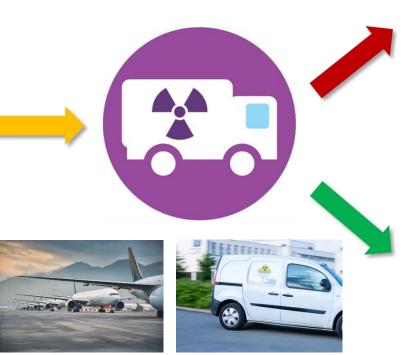
Certificate of Analysis

EndolucinBeta 40 GBq/ml Radiopharmaceutical precursor solution

Lot No.:	Lu-22-346-01	Time of Manufacturing	13.06.2022 11:00			
Serial No.:	11103081-0-0	[CET]:				
Customer:	SCK-CEN					
Activity [GBq]:	9.3	ART [CET]:	20.06.2022 12:00			
Volume [µl]:	238	Expiry Date [CET]:	22.06.2022 11:00			
Chemical Form:	Lu (3+) in aqueous 0.04 M HCl solution					
Packaging:	2 ml type I glass vial, closed with fluorotec coated bromobutyl septum and center hole crimp cap					

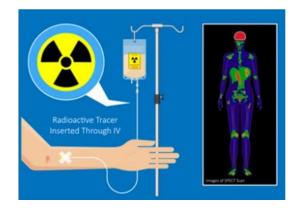
Test		Specification	Unit	Result
Activity per Vial		90 - 110	96	complies
		of the activity stated on the label		
Radioactivity Concentration		36 - 44	GBq/ml	39
(Dose Calibrator)				
Appearance		Clear and colorless solution	n.a.	complies
Identity Lu-177		113 keV gamma line existing	n.a.	complies
(Gamma spectrometry)		208 keV gamma line existing		
Identity Chloride (Ph. Eur.)		White precipitate visible	n.a.	complies
pH value (pH indicator strips)		1 - 2	n.a.	complies
Specific Activity (ICP-MS)	2	≥ 3000	GBq/mg	3020
Chemical Purity (ICP-MS)		Fe ≤ 0.25	µg/GBq	<0.01
corrected to Lu-177 activity at EOS		Cu ≤ 0.5	µg/GBq	<0.1
		Zn ≤ 0.5	µg/GBq	<0.1
		Pb ≤ 0.5	µg/GBq	<0.1
		Yb-176 ≤ 0.14	µg/GBq	<0.01
		Sum of impurities ≤ 0.5	µg/GBq	<0.1
Radionuclidic Purity ⁸		Yb-175 ≤ 0.01	%	<0.01
(Gamma spectrometry)		Sum of other impurities ≤ 0.01	%	<0.01
corrected to Lu-177 activity at EOS				
Radiochemical Purity (TLC)		≥ 99.0 as 177LuCl3	%	100.0
Radiolabeling Yield (TLC)		≥ 99.0	%	99.9
based on radiolabeling with Lu-177 of				
DOTA-derivate, molar ratio 1:4				
Bacterial Endotoxins (Ph. Eur.)		≤ 20	EU/ml	<2
Sterility (Ph. Eur.)		Sterile	n.a.	Sample taken

1 Result taken from In-Process Control, value decay-corrected to ART 2 Result taken from Release / Retest of API, value decay-corrected to ART 3 Result taken from Release / Retest of API, value decay-corrected to EOS ART: Activity reference time EOS: End of shelf life " OOS Result



79

Transport of purified radionuclide

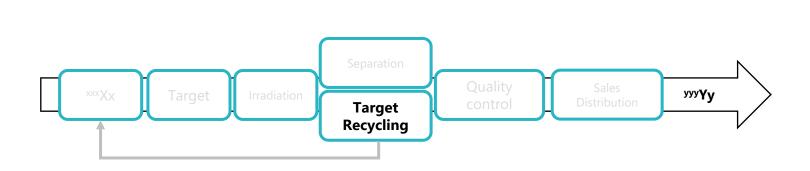


Radiochemical processing facility

Radiopharmaceutical company

Hospital

Target recycling


Target manufacturing and irradiation

Radio-chemica

Quality contro

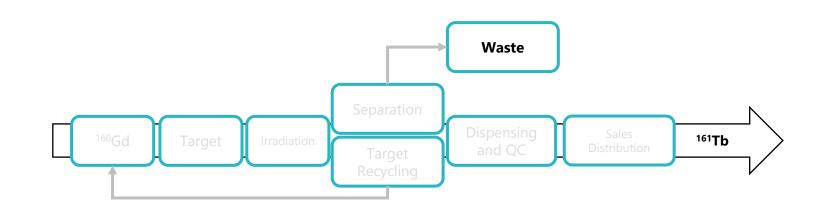
Target recovery and recycling

Waste management

- Target material is scarce and highly valuable
- Needs to be recovered from separation process matrix
 - \rightarrow Conversion to the oxide (or other suitable compound)
- Needs to be suitable for re-irradiation, i.e. safe handling by reactor operators (acceptance criteria set by reactor management)
 - Removal of long-lived radio-contaminants
 - → Decay strategy
 - → Reprocessing strategy
 - Proper characterization and QC

Waste management

Target manufacturing and irradiation


Radio-chemical processing

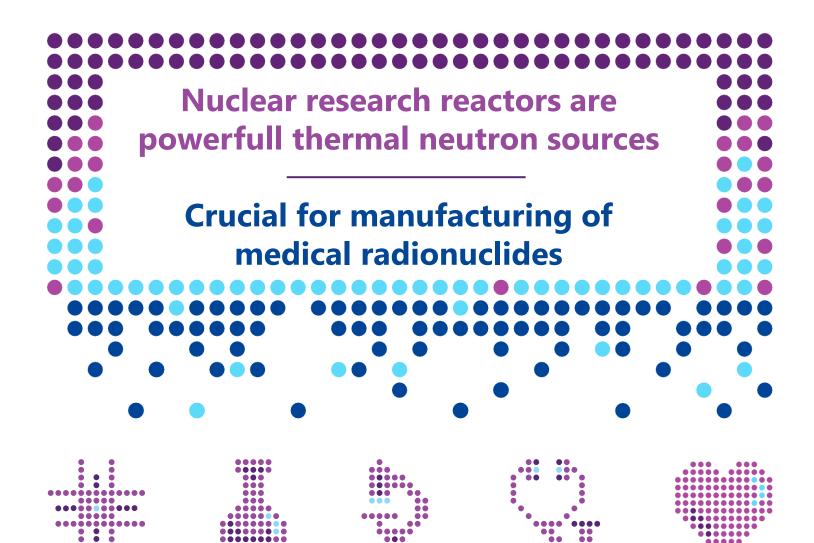
Quality control

WA

Target recovery and recycling

Waste management

- Identification of long-lived radio-contaminants in each fraction
 - Depends on purity of target material
- Appropriate waste collection and treatment strategies
 - Liquid waste
 - Solid waste


WA

- Appropriate selection of materials used for irradiation (e.g. quartz quality)
- → To be considered during design of the radiochemical process and selection of appropriate target material!

Conclusions

- High thermal neutron fluxes are required for efficient production of radionuclides
- Two major production pathways
 - $^{235}U(n,f) \rightarrow Major production route for <math>^{99}Mo/^{99m}Tc^{1}$
 - Neutron activation → Predominantly therapeutic radionuclides
- Supply chain can be complex, and is a race against time
- Simple, robust and scalable radiochemistry steps
- High target quality is key
- Both research reactors and accelerators/cyclotrons are needed for nuclear medicine

.....

.....

...

....

...

....

....

 $\bullet \bullet \bullet$

.

.....

.....

....

•

ě.

÷.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008571 (PRISMAP)

Copyright © SCK CEN

All property rights and copyright are reserved.

This presentation contains data, information and formats for dedicated use only and may not be communicated, copied, reproduced, distributed or cited without the explicit written permission of SCK CEN.

If this explicit written permission has been obtained, please reference the author, followed by 'by courtesy of SCK CEN'.

Any infringement to this rule is illegal and entitles to claim damages from the infringer, without prejudice to any other right in case of granting a patent or registration in the field of intellectual property.

SCK CEN

Studiecentrum voor Kernenergie Centre d'Etude de l'Energie Nucléaire Belgian Nuclear Research Centre

> Stichting van Openbaar Nut Fondation d'Utilité Publique Foundation of Public Utility

Registered Office: Avenue Herrmann-Debrouxlaan 40 - 1160 BRUSSELS - Belgium Research Centres: Boeretang 200 - 2400 MOL - Belgium Chemin du Cyclotron 6 -1348 OTTIGNIES-LOUVAIN-LA-NEUVE - Belgium

