

Radiochemistry step for the production of medical radionuclides

Dr. Zeynep Talip KU Leuven, 31 May 2024

Paul Scherrer Institute

Participants

	Name	Occupation		Name	Occupation]
1	Flora Mansour	Radiochemist - lab manager	23	Gauri Gauri	PhD Student in synthesizing Mo-based nanomaterials	
2	Laurine Puren	PhD student in production of radionuclides of medical interest with alpha beam	24	Pirmettis Nektarios-Nikolaos	PhD Student on Radiopharmaceutical Chemistry	
3	Santiago Andrés Brühlmann	PhD Student Accelerator-based production of radiometals	25	Valeria Narykina	PhD Student developing 225AC and 212 Pb	
4	Magda Silva	Nuclear physicist	26	Kristoffer August Poulsen	Master´s degree in Nuclear Science	
5	Busani Bhengu	MSc. Project: iThemba LABS	27	Om prakash Dash	Researcher in experimental nuclear physics	
6	ChristiAnna Brantley	PostDoc in delivery systems for alpha-emmiting radionuclides	28	Ghazal Yazdanpanah	Master 's student in Nuclear Applications	
7	Stijn De Schepper	Medical Physics expert and PhD Candidate: research in quantitative SPECT/CT	29	Mohamed Nawar	Radiochemist	
8	Max Conroy	PhD on radioisotope production	30	Aicha Nour Laouameria	PhD Student in production of radionuclides for Targeted Auger Electron-Emitter Therapy	
9	Davide Serafini	PhD student in experimental physics	31	Anna Krzyczmonik	PostDoc on production of novel prosthetic groups for radiohalogenation	1
10	Edward O'Sullivan	PhD Student in Nuclear Physics on complete decay spectroscopy of 152Tb	32	lhab shokair	PhD Student in radiolabeling various prosthetic groups	
11	Mamad Eslami	PhD Student in production of the 64Cu/67Cu	33	Adriano Biolognani	PhD Student on radiochemistry	
12	Jonathan Walg	PostDoc in radionuclide production	34	Karolina Zajdel	PostDoc in development of next-generation lanthanide-doped up-converting nanoparticles for theranostic applications	
13	Vanessa RHODEN	PhD student in fabrication and characterization of Gd targets	35	Hasanul Banna	PhD student in radionuclide production and molecular mechanism of radioactive molecules in cellular signaling, diagnosis and therapeutics developments	
14	Edoardo Renaldin	PhD Student in producing medically relevant radiolanthanides	36	Nosihle Msabala	Bc. in Physics. Investigating in finding a material that will shield healthy cells when the cancerous ones are being irradiated	
15	VARUN VIJAY SAVADI	PostDoc optimization of tritium losses	37	Alexandra Fonseca	PhD Student in a new generation of copper-based radiopharmaceuticals at ICNAS Pharma	
16	Aurora Leso	PhD Student evaluation of radiopharmaceuticals containing 111Ag	38	Danai Bili	(Implementation and leading of AI projects within the medical technology sector of Johnson & Johnson	
17	Letizia Canziani	PhD Student utilizing a TRIGA Mark II reactor to produce radioisotopes for radiolabeling	39	Ralitsa Mancheva	PhD Student on improving radionuclide production at MEDICIS	
18	Pavithra Kankanamalage	R&D radiochemist	40	Konstantina Botsiou	Master´s degree student in Nuclear Physics and Astrophysics	
19	Lisa Gubbels	PhD Student Development of a thorium based target for the production and release of Ac225 at the ISOL facility of MYRRHA	41	Nik Muhammad Fitri	Radiopharmaceutical Production Pharmacist	
20	James Hill	Perform, manage and consult on radiochemistry research projects primarily concerning therapeutic nuclides	42	Busisiwe Mbatha	BSc Hydrology & physics student	
21	Ho Sze Chan	R&D manager. Mission: produce GMP grade 225Ac using a cyclotron in the future				03.06
22	Julia Raitanen	PhD Student assessment of new radiopharmaceuticals				00.00

4

What have you learned so far?

PRISMAP School on Radionuclide Production

PSI

After attending this lecture, you will be able to:

- name the required steps for the radiopharmaceutical development pipeline
- understand the importance of each step of medical radionuclide production
- understand the selection criteria for medical radionuclide
- understand the working principle of column chromatography
- understand the working principle of ion exchange and extraction resins
- understand the method development for separation chemistry

 describe the challenges for the production of novel medical radionuclides from bench to bedside

6

Production of Medical Radionuclides

Radiopharmaceutical Development Pipeline

8

View from a producer side

9

Z. Talip et al., Molecules, 25 (2020) 966.

10

PSI

Decay properties

- Decay emission
- Half-life
- Energy of emission
- Associated emission

- Cross sections
- Production routes
- Targetry
- Availability of target
- Cost of production
- Separation chemistry
- Specific activity

- Synthesis of labeling precursor
- Labeling of the precursor
- Chemical purification of the labelled compound
- Chemical properties
- Stability

N. van der Meulen and Z. Talip, 2021, Nuclear Medicine and Molecular Imaging

Targetry

PSI

Targetry for cyclotron produced radionuclides

The target material effects

- Production yields
- Side products
- Separation chemistry

Nuclear Data

Irradiation

14

PSI

Separation of Medically Relevant Radionuclides

Chemical Separation

Separation Modules

Separation Chemistry for Medical Radionuclides

Method development

Separation Chemistry for Medical Radionuclides

Distribution coefficient, K_D

 $K_{D} = \frac{[M]_{stat}}{[M]_{mob}} \qquad [M]_{stat} \text{ the quantity of analyte in the mobile phase}$

[M]_{stat} the quantity of analyte in the stationary phase

 $= \frac{(Co - Cs) V}{Cs x w}$ High Kd values: Loading concentration Low Kd values: Elution concentration

Separation factor, S_F

$$S_{F} = \frac{K_{D}(A)}{K_{D}(B)}$$

PSI

Definition:

"The term «chromatography» is the general name for a wide range of physicochemical separation processes in which the components to be separated are distributed between a stationary and a mobile phase."

• Ion Exchange Chromatography

• Extraction Chromatography

Natural bioactive compounds, Technological advancements, 2020

It is divided in two groups:

Cation exchange chromatography

 $R - X^- C^+ + M^+ B^- \longrightarrow R - X^- M^+ + C^+ + B^-$

> Anion exchange chromatography

$$R - X^+ A^- + M^+ B^- \rightleftharpoons R - X^+ B^- + M^+ + A^-$$

Strongly acidic cation exchanger:

sulphonic acid groups attached to a co-polymer styrene (sites for exchangeable functional groups) and divinyl benzene (cross linking agent). It can exchange cations in all pH range

Weakly acidic cation exchanger:

carboxylic acid group attached to acrylic and divinyl benzene co-polymer

Cation exchange chromatography

co-polymer styrene

$$R-SO_3^-H^+ \rightleftharpoons R-SO_3^-+H^+$$

- The process is reversible.
- The exchange reactions take place on the basis of equivalency in accordance with the principle of **electro neutrality**. The number of milimoles of an ion sorbed by an exchange should correspond to the number of milimoles of an **equally charged ion** that has been released from the ion exchange.

- The selectivity is proportional to the valence.
 (For example, Na⁺ < Ca²⁺ < Al³⁺ < Th⁴⁺).
- When the valence is same, the selectivity become higher in order of increasing atomic number (Li⁺ < Na⁺ < K⁺ < Rb⁺ < Cs⁺, Mg²⁺ < Ca²⁺ < Sr²⁺ < Ba²⁺)

1. Starting conditions

2. Adsorption of sample substance

2. Adsorption of sample substance

Gradient elution is accomplished by increasing the concentration of the eluent during the separation

3. Start of desorpion

 $HNO_3 0.1 M$

HNO₃ 4 M H⁺(H

Gradient elution is accomplished by increasing the concentration of the eluent during the separation

4. End of desorpion

 $HNO_3 0.1 M$

H+ (

CH,

H+ (

SO3-

H+ (

H+ (

Gradient elution is accomplished by increasing the concentration of the eluent during the separation

Strong Acid Cation Exchange Resins

DOWEX 50W: hydrogen form

AG MP-50: hydrogen form, macroporous

AMINEX RESIN: hydrogen form, macroporous

SYKAM RESIN: hydrogen form, macroporous

What are the differences?

Resolution increases with decreasing particle size and narrower size distribution ranges.

DOWEX versus AMINEX Resin

Vergleich von Lanthanidentrennungen an Aminex A 5 (ausgezogene Kurve) und Dowex AG 50 X 8 (70 μ strömungsklassiert, gestrichelte Kurve). Elutionsmittel ist 0,5 m α -Hydroxyisobuttersäure, $p_{\rm H} = {\rm const.}$ PSI

Sykam Resin (12-22 µm)

Talip et al., Anal. Chem. 2021, 93, 10798–10806.

Extraction chromatography is the application of conventional **solvent extraction chemistry in a chromatographic mode**.

Traditional polymeric resin material employed as the backbone for EXC material or ordered mesoporous silica and carbon nanoparticles are used due to their high surface areas, tunable pore sizes, large pore volumes, and uniform morphology.

Dalton Trans., 2016, 45, 14832–14854.

SOLVENT EXTRACTION AND ION EXCHANGE 2020, VOL. 38, NO. 3, 251–289 https://doi.org/10.1080/07366299.2020.1720958

Check for updates

A Survey of Extraction Chromatographic *f*-Element Separations Developed by E. P. Horwitz

Erin R. Bertelsen [®]^a, Jessica A. Jackson^a, and Jenifer C. Shafer [®]^{a,b}

^aDepartment of Chemistry, Colorado School of Mines, Golden, CO, USA; ^bNuclear Science and Engineering Program, Colorado School of Mines, Golden, CO, USA

Rey separations and extractants used for Exercising developed by normal					
EXC resin	Key separations	Extractant			
TEVA LN	An(IV)/An(III,V,VI) Trivalent <i>f</i> -elements:	Aliquat-336 HDEHP	[13		
LN2 LN3	Ln/Ln', An/Ln, An/An'	HEH[EHP] H[DTMPP]			
Actinide	An(III, VI, IV)/matrix	Dipex			
	An(IV,VI)/An(III,V)	DAAP			
TRU	An(IV,VI) /An(III) An(IV,VI) ^b /An(III)	CMPO in TBP			
DGA	An(III) ^c /An(IV)/An(VI)	TODGA or TEHDGA			

Key separations and extractants used for EXC resins developed by Horwitz.

38

What good separation means?

L. Houyu et al., ACS Earth Space Chem., 5 (2021) 55–65

Quality Control

Quality Control

PSI

For novel radionuclides

driven by research

- ✓ Target material (impurities)
- ✓ Irradiated target (long-lived impurities)
- ✓ **Purified solution** (radionuclidic purity, chemical purity)
- ✓ Labelled molecule (radiochemical purity)

For GMP

✓ Radioactive precursor

✓ Chemical precursor

✓ Radiopharmaceutical

See Kristof's lecture

Examples

Production of Cupper-64

2.38 m	89.1 s	9.193 h ε β ⁺ 0 6	38.1 m	49.17 c 0 731	243.93 d	27.73
γ 670, 61, 273 334	γ 475, 1660 970	γ 597, 41, 548 508	γ 670, 962 1412	$\sigma_{n,\alpha} 1.1E-5$ $\sigma_{n,p} < 1.2E-5$	γ 1115 σ 66, σ _{n,α} 2.0	σ 0.62, σ _{n,α} < 2E-5
Cu 59	Cu 60	Cu 61	Cu 62	Cu 63	Cu 64	Cu 65
81.5 s	23.7 m	3.339 h	9.67 m	69.15	12.7004 h ε	30.85
β+ 3.8 γ 1302, 878 339, 465	β ⁺ 2.9, 3.8 γ 1332, 1792 826	β ⁺ 1.2 γ 283, 656, 67 1185	β ⁺ 2.9 γ (1173)	σ 4.50	γ (1346 <mark>)</mark> β⁻ 0.6, β⁺ 0.7 σ ~270	σ 2.17
Ni 58	Ni 59	Ni 60	Ni 61	Ni 62	Ni 63	Ni 64
68.0769	7.6·10⁴ a ε. β⁺	26.2231	1.1399	3.6345		0.9230
σ 4.39	no γ σ 73. σ _{n α} 12.3		σ 2.1			

⁶⁴Ni(p,n)⁶⁴Cu

60 mg ⁶⁴Ni target (99.1 % enriched)

11 MeV, 50 μ A, 4 h irradiation EOB 8 GBq ⁶⁴Cu

N. van der Meulen et al., J. Label. Compd. Radiopharm, 2020, 62, 460.

- What should be separated? Characterization of the target
- $\circ~$ Separation time? Half-life of the desired radionuclide
- Dissolution of the target? Loading solution
- Available Kd data? Selection of the resins
- Aimed decontamination factors? Radiolabeling efficiency
- Aimed separation yields? **EOB and EOS activities**
- Acidity and volume of the final solution? Usage: preclinical/clinical

To take into account: minimizing the radioactive waste volume & recycling the target material

Separation of Ni, Co and Cu

Commonly used method in the past **Anion exchange resin**: AG1-X8 resin Elution order: Ni – Co – **Cu**

Cation exchange resin: AG-MP 50 resin

Elution order: **Cu** – Co – Ni

0.1 M HCl/60% Acetone ⁶⁴Cu

0.2 M HCl/95% Acetone 55,57,61Co

2 M HCl⁶⁴Ni

Final product in 0.05 M HCl

F. Strelow, Talanta, 1988, 35, 385.

N. van der Meulen et al., J. Label. Compd. Radiopharm, 2020, 62, 460.

Production of Terbium-155

¹⁵⁵Gd(p,n)¹⁵⁵Tb

100 mg ¹⁵⁵Gd₂O₃ target (91.9 %)

25 µA, 8 h irradiation EOB: 200 MBq ¹⁵⁵Tb

¹⁵⁶Gd(p,2n)¹⁵⁵Tb

100 mg ¹⁵⁶Gd₂O₃ target (93.3%)

25 µA, 8 h irradiation EOB: 4.4 GBq ¹⁵⁵Tb

Favaretto et al., EJNMMI Radiopharmacy and Chemistry, 6 (2021) 37.

46

PSI

How we separate lanthanides?/ Why it is difficult?

electronic configuration: [Xe]4fn (n = 0–14)

J. Peter et al., Coordination Chemistry Review, 2020, 406.

How we separate lanthanides?/ Why it is difficult?

Possible Coordination Modes of HIBA with Metal Ions

Separation of neighboring lanthanides?

easier

challenging

Slight differences in the following parameters significantly affect the separation of the radiolanthanides, particularly for the neighboring radiolanthanides.

- $\circ~$ pH of the loading solution
- \circ concentration of the eluents
- \circ pH of the eluents
- \circ column dimensions
- $\circ\;$ the particle size and homogeneity of the resins

(resolution increases with small particle size, but it will increase the back pressure)

- flow rate (for loading and elution)
- 0 ...

Separation of Terbium-155

Favaretto et al., EJNMMI Radiopharmacy and Chemistry, 6 (2021) 37.

Loading solution: Tb fractions in 0.05 M HCl Loading solution: 5 mL 7 M HNO₃ $(5 \mu g Tb and 40 mg Gd)$ **DGA Resin** 0.05 M HCI 100-**Tb fraction** 100-75-80-¹⁶⁰Tb 40 60-30-% % ¹⁶⁰Tb ¹⁵³Gd 40-20-10-

10

30

Elution volume [mL]

40

50

20

0

0

Loading solution: 5 mL 7 M HNO₃ (5 μ g Tb and 40 mg Gd)

DGA Resin Sykam Resin 5% Tb 95% Tb 100% 100% 50% Gd 50% Gd Тb Gd 0.05 M **Tb** fraction 0.13 M 1 M 100₁ HCI HIBA HIBA 100-80-60) 80. Gd Тb 60 Тb 40-% Gd 40 20 20.

0

0

50

100

Elution volume [mL]

150

200

%

0

0

15

30

Elution volume [mL]

45

Separation system: Sykam - HIB

Fine-tuning

Loading solution: 5 μg Tb and 5 μg Gd in 0.13 M $\alpha\text{-HIBA}$

Separation of Terbium-155

Favaretto et al., EJNMMI Radiopharmacy and Chemistry, 6 (2021) 37.

via offline mass separation

57

🌒 PSI

via offline mass separation

Chemical Separation of Mass Separated

Medical Radionuclides

For the mass-separated samples, you do not need to separate macro amounts of target materials and the desired radionuclide.

Zn coated gold foil

Characterization of your sample before and after dissolution

- Amount of coating material
- Presence of isobars?
- Other impurities (tailing?)

Commercially-available non-carrier added 177Lu (ITM, Germany) Zn: ≤0.1 µg/GBq with an activity concentration of 37.5 GBq/mL $(80 \ \mu L \ 3 \ GBq \ 177Lu \ can \ contain \ 0.3 \ \mu g \ Zn).$

Production of novel medical radionuclides from bench to bedside Example of Terbium-161

First Preclinical Study using Tb161

Original article

Evaluation in vitro and in rats of ¹⁶¹Tb-DTPA-octreotide, a somatostatin analogue with potential for intraoperative scanning and radiotherapy

Marion de Jong¹, Wout A.P. Breeman¹, Bert F. Bernard², Edgar J. Rolleman¹, Leo J. Hofland², Theo J. Visser², Buddy Setyono-Han³, Willem H. Bakker¹, Marcel E. van der Pluijm¹, Eric P. Krenning¹

¹ Department of Nuclear Medicine, University Hospital Rotterdam, 3015 GD Rotterdam, The Netherlands

² Department of Internal Medicine III, Erasmus Medical School and University Hospital Rotterdam, Rotterdam, The Netherlands
³ Dr. Daniël den Hoed Cancer Centre, Rotterdam, The Netherlands

In conclusion: Based on the characteristics of ¹⁶¹Tb (low-energy gamma rays, hard beta rays, and a half-life of nearly 7 days) combined with the in vitro binding studies, biological acticity, and in vivo organ distribution of ¹⁶¹Tb- DTPA-octreotide, the latter may be considered a promising radiopharmaceutical for both intraoperative scanning and radiotherapy. Further studies in patients need to be performed now to see whether ¹⁶¹Tb- DTPA-octreotide can indeed open new therapeutic applications for patients bearing octreotide receptor-positive tumours.

Clinical Translation of Tb-161

PSI

Terbium-161 clinical studies

2021

BRIEF COMMUNICATION

First-in-Humans Application of ¹⁶¹Tb: A Feasibility Study Using ¹⁶¹Tb-DOTATOC

Richard P. Baum^{*1}, Aviral Singh^{*1,2}, Harshad R. Kulkarni¹, Peter Bernhardt^{3,4}, Tobias Rydén^{3,4}, Christiane Schuchardt¹, Nadezda Gracheva⁵, Pascal V. Grundler⁵, Ulli Köster⁶, Dirk Müller⁷, Michael Pröhl⁷, Jan Rijn Zeevaart⁸, Roger Schibli^{5,9}, Nicholas P. van der Meulen^{5,10}, and Cristina Müller⁵

¹Theranostics Center for Molecular Radiotherapy and Precision Oncology, ENETS Center of Excellence, Zentralklinik Bad Berka, Bad Berka, Germany; ²GROW–School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands; ³Department of Radiation Physics, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; ⁴Department of Medical Physics and Medical Bioengineering, Sahlgrenska University Hospital, Gothenburg, Gothenburg, Sweden; ⁵Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen-PSI, Switzerland; ⁶Institut Laue Langevin, Grenoble, France; ⁷Department of Radiopharmacy, Zentralklinik Bad Berka, Bad Berka, Germany; ⁸Radiochemistry, South African Nuclear Energy Corporation (Necsa), Pelindaba, South Africa; ⁹Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland; and ¹⁰Laboratory of Radiochemistry, Paul Scherrer Institute, Villigen-PSI, Switzerland

2023

Journal of Nuclear Medicine, published on February 9, 2023 as doi:10.2967/jnumed.122.265291

¹⁶¹Tb-PSMA Radioligand Therapy: First-in-human SPECT/CT Imaging

Akram Al-Ibraheem¹, Rahma M. Doudeen¹, Diyaa Juaidi¹, Alaa Abufara², Stephan Maus³

- 1- Department of Nuclear Medicine, King Hussein Cancer Center, Amman, Jordan
- 2- Department of Internal Medicine, King Hussein Cancer Center, Amman, Jordan
- 3- Department of Nuclear Medicine, Universitätsklinikum des Saarlandes, Homburg, Germany

68

Tb-161 bench to bedside

Precise activity measurement of Terbium-161

Precise activity measurement of Terbium-161

>8.5%

Paul Scherrer Institute PSI

>14%

Different calibration factors should be used for each type of vial!

PSI

Based on GMP guidelines

¹⁶¹Tb-DOTATOC Production Using a Fully Automated Disposable Cassette System: A First Step Toward the Introduction of ¹⁶¹Tb into the Clinic

Chiara Favaretto^{1,2}, Pascal V. Grundler¹, Zeynep Talip¹, Stefan Landolt¹, Lebogang Sepini³, Ulli Köster⁴, Cristina Müller¹, Roger Schibli^{1,2}, Susanne Geistlich¹, and Nicholas P. van der Meulen^{1,5}

¹Center for Radiopharmaceutical Sciences, ETH–Paul Scherrer Institute, Villigen-PSI, Switzerland; ²Department of Chemistry and Applied Biosciences, ETH, Zurich, Switzerland; ³Radiochemistry, South African Nuclear Energy Corp., Brits, South Africa; ⁴Institut Laue-Langevin, Grenoble, France; and ⁵Laboratory of Radiochemistry, Paul Scherrer Institute, Villigen-PSI, Switzerland

¹⁶¹Tb is an interesting radionuclide for application in the treatment of neuroendocrine neoplasms' small metastases and single cancer cells because of its conversion and Auger-electron emission. Tb has coordination chemistry similar to that of Lu; therefore, like ¹⁷⁷Lu, it can stably radiolabel DOTATOC, one of the leading peptides used for the Key Words: ¹⁶¹Tb; specifications; DOTATOC; GMP compliant; automated

J Nucl Med 2023; 64:1138–1144 DOI: 10.2967/jnumed.122.265268 ¹⁶¹Tb specifications until end of shelf-life (9 days after end of separation).

Test	¹⁶¹ TbCl ₃ Specification		
Appearance (visual inspection)	Clear and colorless solution		
Identity (γ-spectrometry)	$74.6 \pm 1 \text{ keV}$		
	87.9 ± 1 keV		
	$103.1 \pm 1 \text{ keV}$		
	$106.1 \pm 1 \text{ keV}$		
	$292.4 \pm 1 \text{ keV}$		
	$550.3 \pm 1 \text{ keV}$		
pH (pH paper)	1–2		
Chemical purity (ICP-MS)	Cu: <1.0 µg/GBq		
	<u>Fe</u> : <0.5 μg/ <u>GBg</u>		
	<u>Pb</u> : <0.5 μg/ <u>GBg</u>		
	Zn: <1.0 µg/GBg		
Sterility	Not required		
Bacterial endotoxins (LAL Test)	<175 IU/mL (injectable dose)		
Radionuclidic purity (γ-ray spectrometry)	¹⁶⁰ Tb ≤0.1%		
Radiochemical purity (TLC)	\geq 99.0% as ¹⁶¹ TbCl ₃		

C. Favaretto et al., J Nucl Med, 64 (2023) 1138.

Novel Medical Radionuclides

Before starting to develop your separation method: first, ask the right questions!!!!

PSI

- What should be separated? Characterization of the target
- $\circ~$ Separation time? Half-life of the desired radionuclide
- Dissolution of the target? Loading solution
- Available Kd data? Selection of the resins
- Aimed decontamination factors? Radiolabeling efficiency
- Aimed separation yields? **EOB and EOS activities**
- Acidity and volume of the final solution? Usage: preclinical/clinical

To take into account: minimizing the radioactive waste volume & recycling the target material

Summary

Before starting to develop your method: **first, ask the right questions**!!!!

Most of the time, there is more than one way to separate different elements.

You should adapt your method based on the usage of your final product.

If you aim to bring medical radionuclides to the final step (clinical studies), look at the big picture.

PSI

PRISMAP Radiolanthanides Workshop

3-5 September 2024 Villigen, PSI

https://indico.psi.ch/event/15961/

Day 1

Production	Cross Section	Decay Data	Radiochemistry	Mass Seperation
Mikeal Jenssen Paul Schaffer Day 2	Thomas Sounalet Saverio Braccini	Frederic Juget Sean Collins Emilio Maugeri	Paul Ellison Michiel Van de Voorde Nick van der Meulen Zeynep Talip	Ulli Köster Robert Eichler Lucia Popescu Thierry Stora
Dosimetry	Preclinical	GMP Production	Clinical Studies	
Peter Bernhardt Elif Hindie Michel Koole	Cristina Müller Maarten Ooms Antonio Rocha Paulo Michel Ma	Susanne Geistlich Clemens Decristoforo Anna Catherina Senn	Damian Wild Samer Ezziddin	

Day 3

Panel Discussion (Clinical translation of Terbium-161)								
Presentation: Richard Baum								
Panel: Roger Schibli (Moderator)	Richard Baum	Damian Wild	Samer Ezziddin	ITM	TerThera			

Thank You For Your Attention

Dr. Zeynep Talip zeynep.talip@psi.ch

PRISMAP School on Radionuclide Production: 31.05.2024